

OVAL GEAR METERS TECHNICAL GUIDE

Fill-Rite Company's proven durability and reliability has made its products the first choice for hard-working customers around the world who demand the best from their equipment. Whether you're transferring fuels, oils, or chemicals, you can trust Fill-Rite and Sotera equipment to get the job done right.

DO NOT RESET WHILE COUNTING FILL-RITE VISIT FILLRITE.COM FOR OUR FULL LINE OF OVAL GEAR METERS.

TABLE OF CONTENTS

Custody Transfer Oval Gear Meters	16	Selecting an Oval Gear Meter
		23 Viscosity Table
Non-Custody Transfer Oval Gear Meters		25 Pressure Rating Table
		24 Ratio Gear Plates Table
Model Number Specifications	25	Installation & Start Up
Positive Displacement Meters	26	Meter Calibration
Oval Gear Meter Overview	27	System Air Elimination
Meter Accessories	29	Conversion Tables
Registers, Data, & Communications	30	TS Meter Spec Chart
		30 Gallons
Flow Meter Definitions		32 Metric

A NOTE

This guide provides distributors with the basic information required to select a suitable flow meter for most applications. It addresses selection of:

- The basic flow meter model size
- Suitable registration & communications components
- Suitable/required accessories for the intended service

Fill-Rite cannot be responsible for model selections made in contradiction of the information and recommendations contained in this guide. If in any doubt about:

- Appropriate model selection for specific operating conditions
- Register or Accessory capability/functionality
- Communications signal compatibility

Please consult with Customer Service or your Regional Manager.

Custody Transfer Oval Gear Meters

TS06 Meters - DEF / AdBlue Solution

- Compact design, only 3.5" x 4" x 5.6" & lighter than 10 pounds
- · Easily serviced in place
- "Zero point" calibration in place
- · Accurately measures DEF
- NTEP and Measurement Canada approved for DEF custody transfer in the U.S.A.
- Positive displacement oval gear technology

- All wetted materials are approved per ISO 22241-3
- "Wave Form" gear technology
- Three-piece case construction

TS06C

<u>APPROVALS</u>

Flow Meter:

- CE mark
- NTEP 99-210A12, 2-20 GPM
- Measurement Canada AV-2360 Rev 4

Pulser:

Intrinsically safe (UL, cUL, & ATEX)

Pulse Resolution:

- 1,024 ppg (270.5 PPL)
- 1,000 ppg (246.5 PPL)
- 400 ppg (105.7 PPL)
- SCL Change ±3%

SPECIFICATIONS											
MODEL	NOMINAL	CAPACITY	PRESSURE RATING	TEMPERATURE Rating	CONNECTIONS						
TS06CFDM	2-20 GPM	7.5-75 LPM	50 PSI at 100°F 3.5 BAR at 40°C	-40°F to +122°F	¾" Ports FNPT or BSPP						
1200CEDIM	450-4,	500 LPH	3.5 BAR at 40 °C 345 kPa at 40°C	-40°C to +50°C	- companion flanges						

MATERIALS									
CASE	GEARS	POSTS	SEALS						
316SS	316SS with DEF approved engineered polymer bearings	HC316SS	Fluorocarbon						

METER PERFORMANCE

Reliability & Linearity: NTEP & Measurement Canada dispenser meter standards

PULSER

Hall effect pulser with two ouputs for quadrature (if needed) 5-24 VDC

Aluminum LPG Meters

For LPG service, whether Propane or Propane/Butane mixtures, our lightweight, high pressure TS Series is the perfect choice. With no metal-to-metal contact in the measuring chamber, Fill-Rite Oval Gear Meters provide long reliable service with a minimum of maintenance. NTEP approved for LPG service. Dual hose meters available.

	SPECIFICATIONS										
MODEL	FLOW PRESSURE RATING PULSE RESOLUTION (PPG) REPEATABILITY I										
TS06A	3-18 GPM (11-68 LPM)	350 PSI at 100°F (24 bar at 40°C)	380 PPG (100 PPL)	±0.24%	±0.6%						
TS10A	4-40 GPM (15-150 LPM)	350 PSI at 100°F (24 bar at 40°C)	100 PPG (26 PPL)	±0.24%	±0.6%						

	MATERIALS								
CASE	CASE GEARS								
Hardcoat anodized aluminum	PPS (polyphenylene sulfide resin) with carbon bearings TSO6A only - 3316SS with carbon bearings	300 Series SS Hard Chrome Coated	UL Approved Buna N						

APPROVALS

- NTEP (US Weights & Measures)
- UL Listed
- CE Mark
- TS06A MID Approved

STANDARD CONFIGURATOR

Includes Strainer, Vapor Eliminator, Control Valve, & Relief Valve

ACCESSORIES

EMR⁴ Electronic Register

Our TS Series meters are the standard in Rotary Positive Displacement meter category. The accuracy and repeatability makes them ideal for any environment. Mounted to a truck for bulk delivery; High Speed batching and unloading; Chemical and fertilizer transfer or delivery; the TS meters are compact, lightweight, and easy to maintain. The unique oval gear design allows for compact mounting with minimal piping. The modular design allows flexibility in assembly for either mechanical registration or glandless pulse output to a variety of electronic counters, controllers, or signal conditioners.

All TS Meters sizes are NTEP certified for Custody Transfer (formerly known as NIST Certification). Most TS models from 1-1/2", 2", and 3" are certified in Canada, as well as MID approved. Please consult fillrite.com for specific certificate approved models or contact our Customer Support team.

- Only two moving parts
- No metal-to-metal contact in chamber or bearings
- · Electronic glandless meter
- "Wave form" oval gear design
- Low differential pressure for maximum flow

TS15AW04

	SPECIFICATIONS												
MODEL	CAPACITY at 10:1 tu		PORT CONNECTIONS	LINEARITY OVER 5:1 Turn-down from Max Capacity	LINEARITY OVER 10:1 Turn-down from Max Capacity	LINEARITY OVER 30:1 Turn-down from Max Capacity							
TS15	60 GPM	230 LPM	1.5" 150# RF bolted,	±0.175%	±0.30%	±0.5%							
1313	14 r	n³/h	FNPT, or BSPP	÷0.175%	-0.30 /6	-0.576							
TS20	150 GPM	570 LPM	2" 150# RF bolted,	±0.175%	±0.30%	±0.5%							
1320	34 r	n³/h	FNPT, or BSPP	∸0.1/5/6	∸0.30 ⁄₀	÷0.5%							
T000	300 GPM*	760 LPM	AL: 3" 150# RF bolted,	.0.1750/	.0.000/	.0.50/							
TS30	45 r	n³/h	FNPT, or BSPP SS: 3" 150# ANSI only	±0.175%	±0.30%	±0.5%							

*300 GPM for NTEP Models | 200 GPM for M & C Models

PRESSURE RATING

At 100°F (38°C), *Electronic:* 400 psi/28 bar except TS30C-275 psi/19 bar | *Mechanical:* 150 psi/10 bar

REPEATABILITY TEMPERATURE RATING

Design $-40^{\circ}F/^{+}275^{\circ}F = -40^{\circ}C$ to $^{+}125^{\circ}C$ 0.2% **PULSER**

TBB 5-24; 24VDC | SCL 5-24 V SCL Change ±3%

MATERIALS										
CASE	GEARS	POSTS	SEALS							
316 Stainless Steel	PPS (polyphenylene sulfide resin) with carbon bearings (Std), PTFE optional	300 Series SS Hard Chrome Coated	PTFE Standard							
Anodized Aluminum	PPS (polyphenylene sulfide resin) with carbon bearings (Std), PTFE optional	300 Series SS Hard Chrome Coated	Fluorocarbon (Std), PTFE							

NOMINA	NOMINAL PULSE RESOLUTION (±3% NOMINAL)									
STANDARD MODELS	1cP VISCOSITY STAINLESS STEEL	1cP VISCOSITY ALUMINUM								
TS15	1,152 ppg (304.3 ppl)	1,013 ppg (267.6 ppl)								
TS20	395 ppg (104.3 ppl)	395 ppg (104.3 ppl)								
TS30	275 ppg (72.6 ppl)	275 ppg (72.6 ppl)								

TM Mini Meters

The TM Series of meters are meters up to ¾" with capacities to 20 GPM (76 LPM) where medium to high operating pressures are common. This makes them ideal for use in Additive Injection Service, industrial process, batching, fuel consumption systems, and monitoring flow lubricants to critical bearings in large rotating equipment. Our TM Series provide compact, accurate, and high performance with minimal piping requirements. With only 2 moving parts, this meter provides performance with ease of maintenance.

- Only two moving parts
- No metal-to-metal contact in chamber or bearings
- Electronic glandless meter
- · Low differential pressure for maximum flow
- Two output pulse types available:
 - Hall Effect 5-24 VDC
 - Reed Switch

TMO4A & TMO4D

SPECIFICATIONS											
MODEL		Y ON 1cSt Urndown	PORT CONNECTIONS	LINEARITY OVER 10:1 Turn-down from Nominal Capacity	REPEATABILITY						
TM02	0.3 GPM	1.1 LPM	1/4" FNPT or BSPP	±2-3%	±0.25%						
TIVIUZ	18 GPH	68 LPH	74 FINET UI DOFF	-Z-J /o	∸0.23 ⁄₀						
TM03	3 GPM	11 LPM	3/8" FNPT or BSPP	±1%	±0.25%						
TIVIUS	180 GPH	681 LPH	78 FINET UI DOFF	-1 /0	∸0.23 ⁄₀						
TM04	10 GPM	38 LPM	½" FNPT or BSPP	±0.5%	±0.175%						
110104	600 GPH	2,271 LPH	72 FINET UI DOFF	÷0.5 ⁄o	÷0.173 <i>%</i>						
TMOC	20 GPM	76 LPM	3/" FNDT or DCDD	+0 E9/	+0.1759/						
TM06	1,200 GPH	4,542 LPH	34" FNPT or BSPP	±0.5%	±0.175%						

PRESSURE RATING

At 100°F (38°C) with 3:1 safety factor: 1,500 psi (103 BAR)

TEMPERATURE RATING

Design -40°F/+300°F (-40°C to +150°C)

	MATERIALS		
CASE	GEARS	POSTS	SEALS
316 Stainless Steel	PPS (polyphenylene sulfide resin) <i>TM02 only 316SS</i>	316SS Hard Chrome Coated	PTFE
Anodized Aluminum	PPS (polyphenylene sulfide resin)	316SS Hard Chrome Coated	PTFE

ACCESSORIES

Fill-Rite TM flow meters will support most electronic registers and controllers that accept a current sinking (NPN) input when using the hall-effect sensor or a dry-contact input when using a reed switch sensor.

Model Number Specifications

Mechanical TS - Oval Gear, 1" and Up

EXAMPLE MODEL

T S 1 5 A V O 4 A T C B M X A X X X N

1									SIZE	NOMINAL CAPACITY	GPM	GPH	LPM	M³/H
	TS						10)	1"	25 mm	40	2,400	150	9
2							15	5	1-½"	40 mm	60	3,600	230	14
	15	_	MATERIAL				20)	2"	50 mm	150	9,000	570	35
3		A	Anodized Aluminum				30)	3"	80 mm	300*	12,000	1,135	46
	A	C	316 Stainless Steel				*M &	C Mod	els only t	to 200 GPM				
4	Assembly										-	Meter Or	ıly - No Reş	gister
	Number								V03*			(Register F		
5		Α	NPT		MECHAI	NICAL REGIST	ER						stributor to	
	Flange	B	BSP	T	1/10) US Gallons		FOLIO		RESET TOTAL	₽		nly - Calibi	
6	Register	C	150# ANSI Adapters	G	1/1	US Gallons		CORE PORTFOLIO	V04			RAD Adapter, Ratio Gear Plate, & Register		
	Calibration			Υ	1	./10 Liter		3					, 3	
7	Pressure	_		L		1/1 Liter			V05*			V04	+ Straine	r
	Rating	C	150 PSI (10 BAR)											
8	Rotor &				TYPE	MAT'L	BEARING	l a		(o)_		Calibrate	or, RAD Ada	anter
	Bearing			В	LV	PPS	Carbon	CORE PORTFOLIO	V06			Ratio Gea	r Plate, Re	gister,
9	Douring	_		1	HV	PPS	Carbon	83			2	Strainer,	& Air Elim	inator
	Drive	M	Mechanical	C	LV	PPS	PTFE			TORY PROFILE]p			
10				J	HV	PPS	PTFE		V07*			V04 + Zero	Start Ticke	t Printer
	Pulse Output -	Х	None							_	_			
11		D	10:1 Dry Reed		Viton™	¹(std. in Anoc	lized		V09*			V06 + Zero	Start Ticke	t Printer
	Seals -	S	100:1 Solid State	Α		ninum Model								
12	Classian and			В	PTFE (st	d. in SS, opt	in AA)			1007 MINTER	b			
	Strainer	Х	None						V11*			V04 + 2-Sta & P	age Preset reset Valve	
13	Dealest March	S	Fill-Rite 90° Strainer		40 Mes	n Basket (sta	ndard			•••				
	Basket Mesh	3	Till-Rite 30 Strailler	4		LV & HT roto		TF OLIO	V4.0	Tool reality		V06 + 2-Sta	age Preset	Counter
14	Cortification			2		n Basket (sta ith HV rotors)		CORE PORTFOLIO	V13		~ ≥∞		reset Valve	
	Certification	N	NTEP					٥		3007 February	7 ⊾			
		M	MID						V17*				2-Stage Pr Preset Val	
		C	Canada										rt Ticket Pı	
									*Model	s outside of our	Core Por	tfolio will he i	processed th	ırnııah

Electrical TS - Oval Gear, 1" and Up

EXAMPLE MODEL

T S 2 O A F 6 3 A A A 1 X S T 4 2 4 N

									SIZ	E	NOMINAL Capacity	GPM	GPH	LPM	M³/H
1	TS							10	1"		25 mm	40	2,400	150	9
_								15	1-1/2	2"	40 mm	60	3,600	230	14
2	20		M	ATERIAL				20	2"		50 mm	150	9,000	570	35
_		A	Anodiz	ed Aluminum				30	3"		80 mm	300	12,000	1,135	46
3	A	C	316 St	ainless Steel				*M & C	Models o	only to	200 GPM				
4	Assembly	Α		NPT		SEAL	ROTOR	BEARING	CORE PORTFOLIO	V04				er Only - N	
	Number	В		BSP	Α	Viton™	LV	PPS/Carbon	CORE PI		74(W04 Register Flange		
5	Flores	С	150# A	NSI Adapters	V	Viton™	HV	PPS/Carbon				_			
	Flange				F	Viton™	LV	PPS/PTFE	W	05*			W04 + Strainer		
6	Rotors		VOLT		S	Viton™	HV	PPS/PTFE							
	& Seals	T	5-24	TTB	В	PTFE	LV	PPS/Carbon	W	06*				+ Strainer	
7	Signal	G	5-24	100 PPG SCL	D	PTFE	HV	PPS/Carbon					Air	Eliminator	•
	Configuration	L	5-24	10 PPL SCL	C	PTFE	LV	PPS/PTFE							
8		1	5-24	with EMR ⁴ Register	Н	PTFE	HV	PPS/PTFE	F	14*			Meter Only (Reg	+ Register	
	ATEX Gland			neglete.	_										
9		_ A	ATI	EX Gland	E		glish						Register Flange		
	Languages				S		anish		F	16*				ster Ready & Air Elim	
10	W: 0 !:				Х	Not Ap	oplicable								
	Misc. Options	S	Stand	ard Strainer	_				F	64*		∕ 1		r Only - wi	
11	Ctroiner Mach	T		ard Strainer TW/TP	4		Mesh					-	EIVII	R ⁴ Registei	ſ
	Strainer Mesh				2		Mesh						Meter. I	EMR ⁴ Regi	ster.
12	Vallage				8		Mesh			63			Strainer,	Air Elimir oid Preset	nator,
	Voltage				X	Not A	pplicable		CORE PORTFOLIO				& Solelic	old Preset	vaive
13	Certifications —				SOLE	NOID	VOLTAGE		CORE PI	.00			Meter.	EMR ⁴ Regi:	ster,
	Ger tillcations —				1:	2	12 VDC			66			Strainer,	& Air Elim	inator
		_ N		NTEP	2	4	24 VDC		*M	odels	outside of our		folio will be r	processed th	nrough
		M		MID	2	8	110 VAC				quoting proces				

220 VAC

Positive Displacement Meters

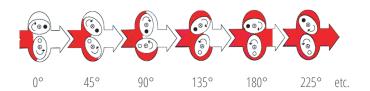
Positive Displacement Meters

A positive displacement meter requires fluid to mechanically displace components in the metering chamber in order for flow measurement. Positive displacement (PD) flow meters measure the volumetric flow rate of a moving fluid or gas by dividing the media into fixed, metered volumes (finite increments or volumes of the fluid). It is this movement, which forms the basis for the measurement.

While no flow meter is ideal for all operating conditions, positive displacement (PD) meters have very broad application coverage, and offer many advantages over most other metering principles. Some are obvious, such as:

Additionally, a correctly selected PD meter has very low Delta P (pressure loss) values compared with a mass flow meter. Less pump horsepower (HP) required to push the liquid through a PD meter leads to:

- No straight pipe requirements on flow meter inlet/outlet
- Mechanical registers are inherently explosion proof
- Certified for Custody Transfer Service (W&M approved)
- Lower initial cost than a mass flow meter


- Lower initial system costs. A system with a mass flow meter requires a PD pump with larger motor
- Lower long term operating costs. Over the life of the system, energy cost savings can be on a scale of thousands, if not tens of thousands of dollars

Fill-Rite manufactures Positive Displacement oval gear flow meters. This guide discusses the TS oval gear meters.

Oval Gear

The oval measuring chamber contains two oval gears. Each gear is centered on a horizontal post (shaft). The gears have interlocking teeth, so they maintain the correct relative position to each other without the use of external timing gears.

As the gears turn, liquid fills the space between the gear and the side of the measuring chamber, alternately in the lower and the upper half of the measuring chamber. In a complete cycle (360° turn of rotors), 4 identical liquid volumes are transferred from the inlet side to the outlet side:

At 0-45° the lower half of the chamber fills, at 90° it is fully defined, and at 135° it releases to the outlet side.

TS Series - 1". 1-1/2". 2". & 3"

All TS Meters sizes are NTEP certified for Custody Transfer (formerly known as NIST Certification). Most TS models from 1-1/2", 2", and 3" are certified in Canada, as well as MID approved. Please consult fillrite.com for specific certificate approved models or contact our Customer Support team.

Custody Transfer certifications are liquid specific, and may vary in terms of maximum flow rate approved. Lack of approval for a liquid category does not mean that the flow meter cannot be used, rather, it must undergo "on location" approval under the supervision of the local authorities.

TS Series meters feature a modular design, with many parts shared between multiple models. These meters are bidirectional, and can be serviced either from the front or from the rear, though service from the front is most practical.

Oval Gear Meter Overview

Flow Meter Model

Every flow meter assembly consists of at least two, and in many cases multiple components from the product groups defined below:

1. Basic Flow Meter

- Model size matched to operating parameters
- · Case material matched to liquid requirements
- Internals may vary with:
 - Liquid characteristics
 - Actual operating conditions

2. Accessories

- Strainer to protect flow meter against foreign particles
 - Optional thermowell for temperature probe
- Air eliminator to prevent measuring air as liquid
 - Optional back pressure valve or air check valve
- · Control valve for:
 - Preset/batching service (mechanical or solenoid)
 - System security (on/off)

3. Register or Controller, Mechanical or Electronic

- Mechanical Register (simple volume display)
- Electronic Register (advanced volume display)
- 2-Stage Preset Counter/Batch Controller
- Printer
- · Rate Display (volume/time), electronic only

In Custody Transfer service (retail sale of liquids), local W&M regulations may dictate what components must be included in the flow meter assembly.

4. Communications

Many flow meters operate as a stand-alone piece of equipment. However, communication with other equipment, such as card readers, key-locks, printers or a local PC are rapidly becoming more common. In industrial installations PLCs and other instrumentation may be part of the system.

TS20AV13

- Air Eliminator
- Strainer
- **3** Back Pressure Valve
- RAD with Packaging Gland & Calibrator
- 6 Preset Valve
- Preset with Linkage
 Valve and/or Air
 Check Valve
- Register

Meter Accessories

Air Eliminator (AE)

PD meters cannot accurately distinguish between liquid and air/vapors. To avoid reporting air/vapors as liquid, an air eliminator should be installed immediately before the flow meter. An air eliminator is mandatory in systems subject to Custody Transfer regulations, unless fluid is supplied by a submersible pump in an underground storage tank. Air eliminators operate on a gravity principle, so this device must be installed in a vertical position.

The operating mechanism consists of a float riding on a center shaft. When air is present the float drops, opening two valve reeds away from the vent ports (1" FNPT). Vent ports must be piped to storage or a collection tank, as a few drops of liquid might exit when the air eliminator vents.

NOTE: Vent ports should not be capped or sealed off. They should be vented to a safe location.

AIR ELIMINATOR

Flow Meter Model

The venting mechanism is restricted to 150 PSI (10 BAR) differential. The air eliminator may be turned in 90° increments on the strainer. This permits piping of vent lines in the most convenient pattern to the individual installation.

MATERIALS

Air Eliminator Body/Cover	Anodized Aluminum
Float, Guide, & Valve Reeds	Stainless Steel
Baffle Below the Float	PPS
All O-Rings	Viton™ standard, PTFE opt.

RATING

To 150 PSI (10 BAR) at 100°F (38°C) if venting to collection tank/system.

To 350 PSI (24 BAR) at 100°F (38°C) in LPG systems.

Strainer

It is recommended that every positive displacement flow meter be protected against foreign particles with a strainer and required when using an air eliminator.

STANDARD STRAINER

This is a 90° strainer, which can be assembled with inlet from either the front (standard) or the rear (optional). The liquid stream turns 90° to enter the flow meter. Inlet flange and strainer basket cover have the same bolt pattern, so the inlet position can be changed in the field.

The Strainer is supplied with a stainless steel mesh basket.

40 Mesh Standard

• 20 Mesh For high viscosity liquids

200 Mesh
 For LPG service

Fill-Rite strainers are manufactured in two sizes, 2" for use with models TS15A & TS20A, and 3" for use with model TS30A. The strainer outlet flange bolts directly to meter body on models TS15A - TS30A meters. Both strainers have an opening on top, where either a blind cover or an air eliminator is installed.

2

MATERIALS

Strainer Body/Cover	Anodized Aluminum
Flange & Basket Cover	Anodized Aluminum
Strainer Basket & Mesh	Stainless Steel
All O-Rings	Viton™ standard, PTFE opt.

RATING

To 150 PSI (10 BAR) at 100°F (38°C)

Back Pressure Valve

The air eliminator requires some back pressure for maximum efficiency. In systems with little back pressure from other components, it might be necessary to add a back pressure valve between the strainer and the flow meter. This component is commonly required on tank trucks. This flat wafer type valve fits between strainer flange and flow meter inlet. Installing a back pressure valve usually eliminates the need for the alternative air check valve.

MATERIALS

Valve Poppet & Stem	Steel/Stainless Steel
Valve Stem & Spring	Stainless Steel/Steel
Seal Ring	Viton™

Air Check Valve

In some regions regulations require use of an air check valve in conjunction with the limited bleed version of the Air Eliminator. This valve is mounted on the flow meter outlet, and requires a connection to one of the air eliminator vent ports.

The air check valve has a spring loaded piston (12-15 PSI) that is held open by system pressure. When the air eliminator opens, the system pressure is directed to the backside of the piston. With pressure equalized, the piston now closes the valve to stop the flow. When the air eliminator closes, system pressure is bled off the piston backside, so when the valve opens, flow resumes. The connection between the air eliminator vent port and air check valve must be provided in the field (pipe, tubing, or hose). The air check valve utilizes the same body as the preset valve, with the same materials, pressure rating, & installation options.

Preset Valve

When the flow meter has a Preset Counter, or an electronic register with preset function, a control valve is required to stop the flow at the end of the selected volume. A valve with dual shut-off is required if flow rate exceeds 20 GPM (75 LPM). On the first trip (signal), the valve closes partially to slow down the flow. The second trip (signal) causes the valve to close fully. 2-stage shut-off allows accurate close at the end of the delivery, and prevents hydraulic shock ('water hammer') in the system.

MECHANICAL PRESET VALVE

The Mechanical Preset Valve is a 90° valve used in conjunction with a mechanical Preset Counter. The mechanical piston valve has a linkage, which connects to the trip ring in the Preset Counter. The operator enters volume to be delivered on the Preset Counter, and opens the valve by pulling the handle on the linkage.

The preset valve comes in two versions: Low Viscosity (to 50 cSt) and High Viscosity (50-1000 cSt)

For higher viscosity liquids, other types of valves should be utilized (ball or butterfly valve with 1-stage or 2-stage actuator). Mechanical Preset Valves are manufactured of Anodized Aluminum and are available in two sizes; 2" for use with models TS15A & TS20A and 3" for use with TS30A. The valve inlet flange bolts directly to meter body on models TS15A, TS20A, and TS30A.

MATERIALS

Valve Body/Piston/Flanges	Anodized Aluminum
Valve Stem & Spring	Stainless Steel
All Seal Rings	Viton™ standard, PTFE opt.

RATING

To 150 PSI (10 BAR) at 100°F (38°C)

SOLENOID PRESET VALVE

The preset valve is available as a solenoid operated valve for use with electronic preset and industrial batch controllers. This valve uses copper tubing and brass solenoids, and is restricted to liquids with viscosity under 50 cSt (233 SSU), and compatible with Viton™ seals. This valve is available in two sizes; 2" for use with models TS15A & TS20A, and 3" for use with TS30A. The valve inlet flange bolts directly to meter body on models TS15A, TS20A, and TS30A.

The Solenoid Preset Valve has relatively high Delta P values (30-40 PSI to open fully), and may be a restriction if a centrifugal or submersible pump is used.

SOLENOID PRESET VALVE

Solenoid valves are available with choice of: Explosion Proof solenoids and/or DC or AC powered solenoids

Registers, Data, & Communications


Mechanical Register

Positive displacement flow meters can be supplied with a mechanical register. Options on mechanical registers can include a preset counter and/or a ticket printer. The register might also have an electromechanical pulse generator, to communicate with other instruments. Mechanical registers offer solid, durable performance.

The mechanical version of the flow meter has a packing gland with a pinion (A), drive shaft (B), with face gear (C), and mechanical calibrator (D), all enclosed within the seal able RAD (Right Angle Drive adapter) mounted on flow meter front cover.

MECHANICAL REGISTER

VOLUME DISPLAY

Mechanical registers are installed on a right-angle drive (RAD) adapter mounted on the front cover of the flow meter. This adapter contains the drive shaft from the flow meter, and the mechanical calibrator assembly.

The standard register has five-digit reset and an eight-digit accumulative totalizer. The six-digit is available for high capacity registers.

Standard register calibration by model <u>(see page 13 for pattern codes and pages 24-25 for ratio gear plate P/Nos.)</u>:

	US	METRIC
TS10	1/10 Gallon	1/10 Liter
TS15	1/10 Gallon	Whole Liter
TS20	1/10 Gallon	Whole Liter
TS30	Whole Gallon	Whole Liter

PRESET FUNCTION

The mechanical preset allows the operator to enter volume to be delivered, and features an **EMERGENCY STOP** button allowing the operator to stop the delivery instantly in the event of an emergency.

The preset counts down, closing the control valve down in two stages at the end of delivery. This enables the controller to stop exactly at the end of the delivery, and minimizes the risk of a hydraulic shock when the valve closes. Two stage valve closure is mandatory when the flow rate exceeds 20 GPM (75 LPM), and always required when batching water directly from a municipal water supply, regardless of flow rate.

The mechanical preset is not recommended for small batches (less than 30-40 second delivery).

Dwell setting (second stage trip) can be adjusted in the preset counter, please refer to the operation manual for the preset counter.

Standard factory settings are:

FUNCTION

DDECET

	MIN BATO	H SIZE	2 ND STAGE TI	RIP SETTING
TS15	12 Gallon	45 Liter	3 Gallon	11 Liter
TS20	20 Gallon	75 Liter	8 Gallon	30 Liter
TS30	40 Gallon	151 Liter	20 Gallon	75 Liter

Since the preset mounts below the register, it requires an up/down ratio gear plate for the register. This gear plate has a longer drive shaft (extending through the preset), and vertical drive shaft driving both register and preset.

The preset may be expanded with a micro switch kit (4 SPDT poles) in an explosion proof enclosure. This allows pump on/off control, or use of a solenoid valve in place of the mechanical control valve.

TICKET PRINTER

The mechanical ticket printer is available in two versions: zero start and accumulative.

- Zero Start prints 0 at the start of the delivery, and total volume delivered at the end of the delivery
- Accumulative prints of the starting and ending totalizer readings

The printer installs on top of the mechanical register. The reset knob is then moved from the register to the printer. Zero Start is supplied as standard, unless the order specifies Accumulative.

The ticket printer uses a standard form, which is available from commercial printers in every country. The printer accepts some variation in ticket dimensions, please refer to (Veeder Roots) VR7888 manual for details.

TICKET PRINTER

PULSE SIGNAL FROM MECHANICAL REGISTER

An electromechanical pulse output may be installed on the mechanical register.

This is identified in position 14 of the P/No., using:

D = Dry reed (10:1)

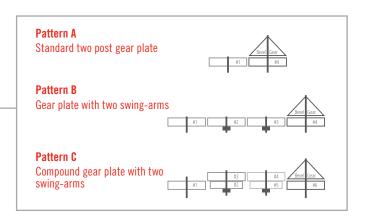
S = Solid state (100:1), 10-15 VDC

NOTE:

	10:1 PULSE OUTPUT	100:1 PULSE OUTPUT
1/10 Unit Register	= 10 PPU	= 100 PPU
Whole Unit Register	= 1 PPU	= 10 PPU

MECHANICAL REGISTER COMBINATIONS

Mechanical flow meters may be supplied with the following combinations:


V03	Without Register (meter with RAD adapter & calibrator only)
V04	With Register (1)
V07	With Register and Ticket Printer (1)
V11	With Register and Preset Counter (1)
V17	With Register, Preset Counter, and Ticket Printer (1) (1) Opt. electromechanical pulse output and/or microswitch

Together with strainer, air eliminator and the optional air check valve, all these combinations can be defined in flow meter Assembly No. (=pos.6-8 in the P/No.).

TS SERIES, RATIO GEAR PLATES FOR MECHANICAL REGISTER

All ratio gear plates are either Pattern A, B or C, with 2, 4 and 6 gears respectively (the bevel gear is common to all gear plates, and does not count in this respect).

Mass ratio gear plates may be assembled for units of mass (kilograms or pounds). When temperature volume compensation is required, electronic registration and compensation is the only option available.

Electronic Registers

Electronic registers entered the market in the early 1990's. The advanced technology has changed the industry, and there are electronic registers for all different levels of functionality and cost. As the technology has improved, many are competitively priced versus their mechanical register counterparts and offer significant advantages:

- Low maintenance
- Zero torque for improved flow meter accuracy
- Register cannot be reset while operating, and is not damaged if reset is attempted
- Glandless meter
- No calibrator to wear out
- Automated data collection

Fill-Rite meters may be supplied ready for use with electronic registers, including factory installed electronic Custody Transfer service registers. Consult Installation Operation Manual for Fill-Rite specifications.

For flow meters with electronic registers there are additional options to consider:

- Electrical specifications (AC or DC voltage)
- Electrical classification (water proof, Intrinsically Safe, or Explosion Proof)
- Solenoid valve, electronic printer, and wireless communications
- Language

BENEFITS

- Provides significantly higher pulse resolution (see page 16)
- Minimizes the number of internal parts
- · Allows service of flow meter without removal of register

ELECTRONIC REGISTER

TEMPERATURE/VOLUME COMPENSATION

When temperature/volume compensation is desired, or required under local regulations, it is available as an option in the EMR⁴ register which react instantly and can be programmed for wide operating ranges.

FEATURES

- Electronic flow meter with pulse output/basic accessories
- · Signal, if required
- Flange Kit
- Electronic register, which can be several items if it is the EMR⁴ register system:
 - Register
- Opt. Temperature Probe Kit
- IB Box
- Protection Kits for Solenoid Application
- Cable Kit
- Opt. system security valve (LPG service)
- Opt. Keypad Kit
- Opt. wireless communications
- Opt. Solenoid Value
- Opt. Electronic Printer

Every combination of these variables is not available, as some do not work together. Please refer to price lists for full details on the variables allowed, consult with Customer Service or your Area Manager.

 EMR⁴ (W&M certified in the US, Canada & the EU). Preset function, Currency & Temperature Compensation functions are standard; add solenoid valve and/or thermowell to the flow meter to utilize all functions. The Interconnect Box has RS232 and RS485 serial ports for PC/printer connections.

Can be mounted directly on the register mounting flange, or installed remote from the flow meter.

Flow Meter Definitions

Types of Measurements

The three standard approaches to measurement are:

Volume - Allows calculation of velocity and mass

Velocity - Allows calculation of volume and mass

Mass - Allows calculation of volume and velocity

There are flow meter principles based on all three measurements. Each type has strengths and weaknesses; no single metering principle is universally better than all others.

When comparing different flow meters to each other, it is important to consider:

- Liquid characteristics vs. operating principle
- Operating conditions (flow rate and viscosity)
- Model 'Accuracy' (see below)
- System design
- Operational practices
- Space and weight constraints

- Local codes and approvals
- Purchase and Installation costs
- Long term operating costs, covering
 - Service costs (ease, frequency, and parts consumption)
 - Low Delta P value (= lower lifetime energy costs)

Turn-Down or Turn-Down Ratio

This term identifies the operating range of a flow meter. This value is calculated by dividing maximum capacity by minimum flow rate. Therefore, if manufacturer model rating is:

FLOW METER 'ACCURACY'

This is frequently a misunderstood term; rather, it is actually flow meter error. There are two different values to consider: flow meter linearity and flow meter repeatability.

MAXIMUM	MINIMUM		
40 GPM	6 GPM	=	7:1 Turn-Down
380 LPM	76 LPM	=	5:1 Turn-Down
300 GPM	40 GPM	=	10:1 Turn-Down

The greater the Turn-Down Ratio, the greater influence on Delta P and Accuracy Curves.

^{*}Items in gray are the minimum requirements

Flow Meter Linearity

Linearity is the maximum deviation from 0% error over the operating range of the meter, shown as a +/- value.

EXAMPLE

From the curve shown, we can extract error values:

FLOW	ERROR	NOTES
5%	- 0.35%	5:1 Turn-Down (20-100%) covers
10%	+ 0.30%	0.15% - (-0.10%) = 0.25% linearity
20%	+ 0.15%	$0.25/2 = \pm 0.125\%$ linearity
40%	- 0.10%	
60%	- 0.08%	or
80%	- 0.03%	10:1 Turn-Down (20-100%) covers
100%	+ 0.05%	(Highest value - Lowest value)/2 = \pm lin%

Alternatively, if we wish to consider service from 5-100% = 20:1 Turn-Down Ratio, we find $\pm 0.30\%$ - $(-0.35\%) = 0.65\%/2 = \pm 0.325\%$

Flow Meter Repeatability

When multiple tests are performed, we can establish flow meter repeatability. This is an expression of maximum deviation (error), and is usually a much smaller value.

For example, six tests showing results ranging from +0.05% to -0.02% against the prover tank equals +/-0.035% flow meter repeatability. Therefore, when a meter is shown as "+/-0.05% 'accuracy", it is referencing flow meter repeatability.

This type of testing requires:

- Same liquid
- Identical flow rate, pressure, temperature, & viscosity
- Same system, controls, & identical test volume

METER TERMINOLOGY

The two terms used to describe the two types of meter assemblies are:

- Flow Meter = Assembly including a display (register)
- Flow Sensor = Assembly without display

Type of Signal

There are several possible communication methods:

PULSE OUTPUT SIGNAL

The pulse signal is a simple electrical On/Off signal (digital value). It is restricted in terms of transmission distances; the longer the distance, the potentially weaker the signal. Loss of signal is relative to distance, pulse signal strength, and wire diameter. The K-Factor (the number of pulses per unit of volume) varies by model size.

Electronic flow meters and registers have numerous variables that must be considered to ensure that meter pulse signal is compatible with the receiving instrument. It is the responsibility of the system engineer or designer to verify that the pulse signal is compatible.

- Voltage requirements for pulse output and instruments
- Type of pulse signal accepted by the receiving instrument
 - Sinking or Sourcing signal?
 - Single or Quadrature signal?

- Minimum & Maximum pulse frequency accepted
- Pulse width (on/off time) requirements
- Voltage ON and OFF values

PULSE OUTPUT SIGNAL

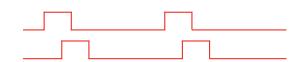
Fill-Rite 3rd generation electronic flow meters have an quadrature pulse output:

- Completely separated from the process fluid
- With high pulse resolution

 Standard with Quadrature signal (use only channel A for non-Quadrature instruments)

When the raw pulse signal is incompatible with the receiving instrument, Fill-Rite offers scaled outputs with several functions. In most situations this will ensure proper communications. However, there are old instruments on the market, which have extreme frequency limitations (= > pulse ON time requirements). These are not compatible with Fill-Rite electronic flow meters. In some of these cases, a mechanical flow meter with an electromechanical pulse output on the register will work instead.

17



PULSE SIGNAL

Square Wave, 50/50 duty cycle. Pulse ON/OFF time will vary by up to 30% at various positions of oval gears, due to cyclical flow profile from oval gear metering principle.

PROFILE

 Square Wave, With scaled pulse output & fixed pulse width (= 0N signal), the duty cycle can no longer be 50/50. Depending upon ON time selected, and flow rate in the system, the duty cycle can stretch to 1/50 or more.

		Pulse Time		Signal	
		ON	OFF	Frequency	
	25%	1.38	1.38 ms	363 Hz	
TS10C	50%	0.69	0.69 ms	725 HZ	
13100	75%	0.46	0.46 ms	1,088 Hz	
	100%	0.34	0.34 ms	1,451 Hz	
	25%	1.74	1.74 ms	288 Hz	
TS10A	50%	0.87	0.87 ms	576 Hz	
TSIUA	75%	0.58	0.58 ms	864 Hz	
	100%	0.43	0.43 ms	1,152 Hz	
	25%	1.74	1.74 ms	288 Hz	
TS15C	50%	0.87	0.87 ms	576 Hz	
13130	75%	0.58	0.58 ms	864 Hz	
	100%	0.43	0.43 ms	1,152 Hz	
	25%	1.97	1.97 ms	253 Hz	
TS15A	50%	0.99	0.99 ms	507 Hz	
1313A	75%	0.66	0.66 ms	760 Hz	
	100%	0.49	0.49 ms	1,013 Hz	
	25%	2.03	20.3 ms	247 Hz	
TS20A	50%	1.01	1.01 ms	494 Hz	
TS20C	75%	0.68	0.68 ms	741 Hz	
	100%	0.51	0.51 ms	988 Hz	
	25%	2.18	2.18 ms	229 Hz	
	50%	1.09	1.09 ms	458 Hz	
TC2OA	75%	0.73	0.73 ms	688 Hz	
TS30A TS30C		0.55	0.55 ms	917 Hz	
13300	100%	0.55	0.00 1110		
	100% 115%	0.55	0.74 ms	1,054 Hz	
				1,054 Hz 1,192 Hz	

Pulse	e Time	Signal		Puls	e Time	Signal
ON	OFF	Frequency		ON	OFF	Frequency
1.30	58.7 ms	16.7 Hz	Г	2.50	156 ms	6.3 Hz
1.30	28.7 ms	33.3 Hz		2.50	76.75 ms	12.6 Hz
1.30	18.7 ms	50 Hz		2.50	50.33 ms	18.9 Hz
1.30	13.7 ms	66.7 Hz		2.50	37.13 ms	25.2 Hz
1.30	58.7 ms	16.7 Hz		2.50	156 ms	6.3 Hz
1.30	28.7 ms	33.3 Hz		2.50	76.75 ms	12.6 Hz
1.30	18.7 ms	50 Hz		2.50	50.33 ms	18.9 Hz
1.30	13.7 ms	66.7 Hz		2.50	37.13 ms	25.2 Hz
1.30	38.7 ms	25 Hz		2.50	103.2 ms	9.5 Hz
1.30	18.7 ms	50 Hz		2.50	50.33 ms	18.9 Hz
1.30	12.03 ms	75 Hz		2.50	32.72 ms	28.4 HZ
1.30	13.7 ms	100 Hz		2.50	23.92 ms	37.9 Hz
1.30	38.7 ms	25 Hz		2.50	103.2 ms	9.5 Hz
1.30	18.7 ms	50 Hz		2.50	50.33 ms	18.9 Hz
1.30	12.0 ms	75 Hz		2.50	32.72 ms	28.4 HZ
1.30	13.7 ms	100 Hz		2.50	23.92 ms	37.9 Hz
1.30	14.7 ms	62.5 Hz		2.50	39.77 ms	23.7 Hz
1.30	6.7 ms	125 Hz		2.50	18.63 ms	47.3 Hz
1.30	4.0 ms	188 Hz		2.50	11.59 ms	71 Hz
1.30	2.7 ms	250 Hz		2.50	8.07 ms	94.6 Hz
1.00	10.7	0.00.11		0.50		04.511
1.30	10.7 ms	8.33 Hz		2.50	29.2 ms	31.5 Hz
1.30	4.7 ms	167 Hz		2.50	13.35 ms	63.1 Hz
1.30	2.7 ms	250 Hz		2.50	8.07 ms	94.6 Hz
1.30	1.7 ms	333 Hz		2.50	5.43 ms	126 Hz
1.30	1.31 ms	383 Hz		2.50	4.39 ms	145 Hz
1.30	1.01 ms	433 Hz		2.50	3.6 ms	164 Hz
1.30	0.77 ms	483 Hz		2.50	2.97 ms	183 Hz

Electrical Classification

It is necessary to establish electrical classification requirements for each portion of the system. Refer to federal, state, and local codes to determine correct electrical classification requirements for your application.

Wireless Communications

This EMR⁴ register is available with wireless communications. With this option, the register will upload transaction data to a home base receiver, any time the unit is within line of sight.

This options requires the purchase of: one home base receiver or one transmitter for each register.

This option is also the economical solution when the distance between the EMR⁴ register and the Interconnect Box exceeds 500' (150 m).

Selecting an Oval Gear Meter

Case Material

Stainless steel is often the material of choice in chemical industry applications. Petroleum and aviation industries prefer lightweight and corrosion resistant aluminum, which is also suitable for many non-corrosive chemicals, including virtually all solvents, alcohols & glycols. To provide broad application coverage, Fill-Rite manufactures meters in the following materials:

Anodized Aluminum, for 5.5-8.0 pH

• 365 T-6 Aluminum

Aluminum: 92.55% | Remainder: 7.45% Silicon, Iron, Copper, Manganese, Magnesium, Zinc, & Titanium

• 6061 Aluminum

Aluminum: 97.95% | Remainder: 2.05% Silicon, Copper, Manganese, Chromium, Lead, & Bismuth

Stainless Steel, for 1-14 pH

• 316 Stainless Steel

Iron: 68.90% | Remainder: 31.10% Carbon, Manganese, Silicon, Chromium, Nickel, & Molybdenum

• CF8M Stainless Steel

Iron: 67.84% | Remainder: 32.16% Carbon, Manganese, Phosphorous, Sulfur, Silicon, Chromium, Nickel, & Molybdenum

Oval Gear & Bearing Material Selection

Fill-Rite meters use PPS (polyphenylene sulfide resin, glass filled), also known as Ryton™ rotor material in most models.

Fill-Rite has used PPS for more than 20 years. This material provides for a wide variety of applications, including engine components by Chrysler, Ford, and BMW among many others. It is an excellent choice for oval gear meter parts because:

- It is compatible with 90% of the liquids in a chemical listing with 200+ entries. For SS the number was 68%
- Rated for use to 240°C (464°F) in continuous duty service
- Lightweight, weighing less than 10% of an equivalent rotor manufactured in SS

For more information on polyphenylene sulfide (PPS) refer to chemical compatibility chart when making meter selection.

In both aluminum and stainless steel rotor options are:

	Visc < 300cSt	Vis > or Tem	p > 120°F
	A12C < 200C2C	300 cSt	(50°F)
PSS with carbon bearings	Std.	Opt	
PPS with PTFE bearings*	Opt.	Opt	

^{*}PTFE bearings should not be used unless specifically required (please refer to the application recommendations on page 20).

Page 19 provides guidance on case material, seal material, and rotor type for many common liquid groups for TS Series meters.

For applications not covered on page 19, some guidance can be found in chemical compatibility lists. Chemical compatibility is not the only issue, so it is critical to consider all aspects of the application and environment.

For example: Sulfuric acid (H_2SO_4) over 90% concentration is compatible with 316SS. However, strong acids are usually so contaminated with foreign particles, that PD meters are not suitable. Mag meters are a better choice for this type of liquid.

High Viscosity (HV) Rotors

High Viscosity (HV) rotors are required when the viscosity can exceed 300 cSt (1500 SSU). In high viscosity applications, limits on maximum differential pressure across the flow meter apply. Using HV rotors on liquids where viscosity is below 300 cSt part of the time, will not affect meter accuracy. HV rotors are also required if operating temperature can exceed 50°C (120°F).

Operational Note

Unless you have the five key values, it may not be possible to make a sound meter model selection:

- · Liquid to be metered
- Flow Rate Range
- Operating Pressure Range
- Viscosity Range
- Operating Temperature Range

Do not operate over 80% of maximum flow capacity on non-lubricating liquids if rotors have PTFE bearings.

Liquid to be Metered

The most important information in making your meter selection is clearly identifying the liquid to be metered. It is impossible to select correct case material, rotor type, bearing material, and seals without it. A guide for common liquid categories is found on <u>page 19</u> in this guide. For liquids not included in that list, please refer to fluid manufacturers compatibility information.

- Generic descriptions are not satisfactory. 'Additive' can cover liquids with pH values from 1-14
- Will the user flush the system with a liquid different from the liquid being metered?
- On shear sensitive liquids, such as adhesives, resins, and many polymers:
 - Use HV rotors with PTFE bearings
 - Meter should not operate at more than 50% of maximum capacity, Delta P restrictions maximum limits operating speed to less on these high viscosity liquids

Operating Pressure

The value shown on the spec sheet applies at a base temperature of 100°F (38°C). At higher operating temperatures, flow meter pressure rating is reduced: (see page 26).

Operating Temperature

Flow meter pressure ratings are impacted by operating temperature ranges. It also impacts model and accessory selections in several other areas:

LOW AMBIENT AND/OR LIQUID TEMPERATURE

- Mechanical meters are rated to -15°F (-26°C). Mechanical meters are NOT suitable for cryogenic service (low liquid temperature/normal ambient), as
 condensation ice interferes with calibrator drive shaft.
- Electronic flow sensors are rated to -40°F (-40°C) and registers vary. Electronic flow sensors might be OK in cryogenic service, since the register can be mounted remote from the flow meter.

HIGH AMBIENT AND/OR LIQUID TEMPERATURE

- When liquid temperature exceeds +120°F (+50°C), use HV rotors in oval gear meters
- Manufacturer rating for electronic signal and registers vary. Refer to spec sheet if higher liquid temperatures can be encountered
- Maximum operating temperature for mechanical register is +180°F (+80°C).
 For higher operating temperatures, use a remote electronic register

HOT WATER SERVICE

- In hot water service of 120°F or higher, use stainless steel case material and de-rate meter parameters by 20%
- Maximum allowable temperature in water service is +194°F (+90°C)

LIQUID		CASE M	ATERIAL	ROTOR	TS SERIES	ROTOR CODE IN		METER MAXIMUM
CATEGORY	EXAMPLES	AA	SS	TYPE	BEARING Material	METER Part No.	SEALS	RATING WITH THIS COMBO
ALCOHOLS	Ethanol, Iso-propanol, Methanol, etc.	V	√	LV	Carbon	В	В	100%
ALDEHYDES	Benaldehyde, Formaldehyde, etc.	√	√	LV	Carbon	В	В	100%
AUTOMOTIVE Fluids	Transmission Fluid, Hydraulic Oil, Glycol, & Water	V	√	LV	Carbon	В	А	Subject to Viscosity Limits
CAUSTICS	Potassium Hydroxide & Sodium Hydroxide		V	LV	Carbon	В	В	100%
FOTERS 0	, ,		·		PTFE	С	В	80%
ESTERS & ETHERS	Amyl Acetate, Butyl Acetate, Dibutyl Phtalate, etc.	√	√	LV	Carbon	В	В	100%
FERTILIZER	Clear Nitrogen Solutions	√	√	HV	PTFE	J	А	80%
GLYCOLS	Ethylene, Diethylene, Triethylene, & Propylene	√	V	LV	Carbon	В	А	100%
HALOGENATED Solvents	Hydrocarbon Solvents, with Fluorine, Chlorine, Bromine, lodine, & Astatine (Perchlorethylene)		V	LV	Carbon	В	В	100%
HERBICIDES	Atrazine, Lasso™, Round-Up™, etc.	√	√	HV	PTFE	J	В	80%
KETONES	Acetone, Cyclohexanone, MEK, MIBK, etc.	√	√	LV	Carbon	В	В	100%
LPG	Butane, Propane, Pentane, & Mixtures	√	√	LV	Carbon	В	С	100%
LUBE OIL	Automotive Lubricants, Gear Oil, & Grease	V	√	HV	Carbon	I	Α	Subject to Viscosity Limits
ORGANIC ACIDS	Acetic Acid, Formic Acid, Lactic Acid, & Vinegar	√	V	LV	PTFE	С	В	80%
REFINED	Aviation Fuels (Avgas & Jet Fuel), Gasoline, Diesel Fuel, Gasohol, Kerosene, & Light Fuel Oil	V	√	LV	Carbon	В	А	100%
PETROLEUM	Fuel Sentry Meters on Diesel & Fuel Oil	√	√	LV	Carbon	L	А	100%
PRODUCTS	Medium & Heavy Fuel Oils, Automotive Lubricants	√	√	HV	Carbon	I	А	Subject to Viscosity Limits
SOLVENTS	Benzene, Mineral Spirits, Toluene, Xylene, etc.	√	V	LV	Carbon	В	В	100%
SYRUPS	Corn Syrup, Sugar Syrup, & Liquid sugar	V	√	HV	PTFE	I	А	Subject to Viscosity Limits Usually <2 5%
SHEAR SENSITIVE Liquids	Adhesives, Glue, Somy, Glycols, Many Resins, etc.		ends n PH	HV	PTFE	J	В	Subject to Viscosity Limits Usually < 50%
VEGETABLE OILS	Corn, Cotton, Olive, Peanut, Soya, etc.	V	V	LV	Carbon	В	А	100%
	Drinking & Process Water		.1	IV	Carbon	В	Α	< 50°C/120°F 100%
WATER	Drinking & Process Water		V	LV	Carbon	L	А	< 50°C/120°F 75%
WAILN	Distilled, Deionixed or Otherwise Treated Water		V	LV	PTFE	C	A	< 50°C/120°F 100%
						M	A	< 50°C/120°F 75%

LV = Low Viscosity Rotors HV = High Viscosity Rotors

 $A = Viton^{TM}$ B = PTFE C = Buna

Model Selection

- Select a meter to operate in 50-85% range of model maximum flow capacity for optimum accuracy and life.
- Intermittent service to 100% of maximum flow capacity is acceptable on low viscosity liquids in most cases.
- Intermittent service over 100% depends upon model configuration, liquid, and type of service (intermittent vs. continuous duty). Please consult with Customer Service if operation over 100% of nominal capacity is being considered.

Flow Rate & Viscosity

It is critical to obtain the actual flow rate at which the meter will be operated. If the flow rate in the system fluctuates, you need to obtain minimum, normal, and maximum values for full evaluation and model selection.

- On low viscosity refined petroleum products, optimum flow meter performance (accuracy & life) is achieved when the flow meter is operating between 50% and 80% of maximum capacity
- When liquid viscosity can exceed 300 cSt (1500 SSU), HV rotors are recommended

MAXIMUM FLOW CAPACITY								
TS10	40 GPM	150 LPM						
TS15	60 GPM	230 LPM						
TS20	150 GPM	570 LPM						
TS30	300 GPM	1,135 LPM						

^{*300} GPM for NTEP Models | 200 GPM for MID & Canadian Models

The table shown at right shows limits on model flow capacity based on maximum liquid viscosity. Multiply the model maximum flow capacity (above) with the meter coefficient for the maximum meter flow capacity. Your fluid viscosity can be obtained from the fluid viscosity chart on pages 21-22.

EXAMPLE

Viscosity = 2,00 cSt

System Max Flow Rate = 22 GPM

Meter Coefficient = 0.77

TS10 Max = 40 GPM

40 GPM x 0.77 = 30.8 GPM Maximum flow rate at 2000 cst

In this example, the calculated meter flow capacity is higher than the system max flow rate (22 GPM). Therefore the TS10 is a good choice to proceed with.

If the system max flow rate is higher than the calculated meter flow capacity, you must repeat the process above for the next larger meter until the calculated meter flow capacity is higher.

ME			

	CARBON I	BEARINGS	PTFE BE	ARINGS
VISCOSITY (cSt)	LV ROTORS	HV ROTORS	LV ROTORS	HV ROTORS
1	1.00	1.00	1.00	1.00
10	1.00	1.00	1.00	1.00
50	1.00	1.00	1.00	1.00
100	1.00	1.00	1.00	1.00
200	1.00	1.00	0.90	1.00
300	0.86	1.00	0.73	0.98
400	0.77	1.00	0.62	0.96
500	0.71	1.00	0.57	0.94
600	0.66	1.00	0.53	0.92
700	0.63	1.00	0.50	0.90
800	0.60	1.00	0.48	0.85
900	0.56	1.00	0.45	0.80
1,000	0.54	1.00	0.43	0.75
2,000	-	0.77	-	0.65
3,000	-	0.65	-	0.55
4,000	-	0.58	-	0.46
5,000	-	0.53	-	0.42
6,000	-	0.49	-	0.39
7,000	-	0.47	-	0.37
8,000	-	0.44	-	0.35
9,000	-	0.42	-	0.34
10,000	-	0.41	-	0.32
20,000	-	0.30	-	0.24
30,000	-	0.24	-	0.19
40,000	-	0.20	-	0.16
50,000	-	0.18	-	0.14
60,000	-	0.17	-	0.13
70,000	-	0.14	-	0.11
80,000	-	0.13	-	0.10
90,000	-	0.12	-	0.10
100,000	-	0.11	-	0.09
200,000	-	0.08	-	0.06
300,000	-	0.07	-	0.05
400,000	-	0.06	-	0.05
500,000	-	0.06	-	0.04
600,000	-	0.06	-	0.04
700,000	-	0.05	-	0.04
800,000	-	0.05	-	0.04
900,000	-	0.05	-	0.04
1,000,000	-	0.05	-	0.04

		-30°F	-30°F	-30°F	0°F	15°F	30°F	45°F	60°F	100°F	130°F	210°F
		-30.4°C	-28.9°C	-17.8°C	-9.4°C	-30.4°C	-30.4°C	7.2°C	15.6°C	37.8°C	54.4°C	98.9°C
	_					VI	SCOSITIES IN (St				
DIESEL FUEL		-	-	-	-	-	30	19	15	5.5	3.8	-
FUEL OIL #2	MIN	18	14	11	8.3	6	4.5	3.6	2.9	1.6	-	-
OLL OIL #2	MAX	70	48	35	25	17	12	8.9	6.7	3.7	2.8	-
! 4	MIN	375	215	135	85	48	30	20	14	6	4	1.8
-	MAX	18,500	7,000	3,000	1,650	650	295	150	80	26	13	4
#5 LIGHT	MIN	60,000	22,000	9,000	3,800	1,300	500	240	130	33	17	4.5
ra Liuiii	MAX	135,000	50,000	21,000	9,000	3,000	1,200	550	285	70	31	7.8
5 HEAVY	MIN	200,000	75,000	30,000	13,000	4,000	1,700	700	350	80	35	8.5
I IILAVI	MAX	?	700,000	180,000	60,000	18,000	6,000	2,200	950	165	68	13
/ 6	MIN	?	?	350,000	15,000	30,000	9,000	3,000	1,400	215	80	14
ru	MAX	?	?	?	?	?	300,000	85,000	30,000	2,000	500	46
	5W20	5,000	2,800	1,700	800	400	230	135	82	31	18	6
	10W-30	10,000	6,500	3,300	2,000	1,000	550	300	175	61	33	11
	10W	13,500	7,000	3,600	2,000	850	430	240	140	45	17	7
LUBE OIL	20W	68,000	30,000	12,500	6,000	2,400	1,050	500	280	75	35	9
SAE	20W-40	70,000	30,000	16,000	7,500	3,100	1,450	750	420	115	55	14
	30	200,000	80,000	35,000	14,500	5,500	2,150	1,000	500	120	55	23
	40	300,000	160,000	65,000	32,000	9,500	3,800	1,700	800	170	75	26
	50	550,000	280,000	115,000	55,000	18,000	6,500	2,800	1,250	270	105	21

					MC	OBILEGEAR® 60	DO SERIES VI	SCOSITIES IN (cSt			
	626	-	-	15,750	-	3,045	1,155	588	294	72	-	8.5
	627	-	-	33,600	-	5,460	2,100	945	462	107	-	12
	629	-	-	63,000	-	9,240	3,780	1,638	756	163	-	16
FOR ENCLOSED GEAR DRIVES	630	-	-	115,500	-	15,750	6,300	2,730	1,197	242	-	20
GENIK DIKIYES	632	-	-	189,000	-	26,250	9,450	4,095	1,610	347	-	26
	634	-	-	346,500	-	46,200	15,750	6,720	29,40	504	-	32
	636	-	-	882,000	-	98,700	33,600	11,970	5,040	735	-	39

			SPRIAX A (SHELL) VISCOSITIES IN CST									
	80W	-	-	-	-	-	2,900	-	500	74	-	9
	80W-90	-	-	-	-	-	7,800	-	1,150	154	-	16
AXLE OIL	85W-140	-	-	-	-	-	20,000	-	3,000	432	-	30
	90	-	-	-	-	-	5,000	-	1,000	185	-	17
	140	-	-	-	-	-	35,000	-	5,000	559	-	33

						(SHELL)	VISCOSITIE	S IN cSt				
	TG	-	-	-	-	-	225	-	85	34	-	7
	ISO 22	-	-	-	-	-	180	-	75	22	-	4
DONAX ATF	ISO 32	-	-	-	-	-	338	-	100	32	-	5
TELLUS HYDROLIC	ISO 37	-	-	-	-	-	440	-	120	37	-	6
OIL	ISO 46	-	-	-	-	-	580	-	140	46	-	7
	ISO 68	-	-	-	-	-	1,040	-	190	68	-	9
	ISO 100	-	-	-	-	-	1,790	-	400	100	-	11

		SP.GR. AT 60°F	30°F	-60°F	80°F	100°F	130°F	170°F	210°F	250°F
		(15.5°C)	-1.1°C	15.6°C	26.7°C	37.8°C	54.4°C	76.7°C	98.9°C	121.1°C
		VISCOSITIES IN cSt								
0440710 0004	20%	1.22 at 65°F	-	4 at 65 °F	-	-	-	-	-	-
CAUSTIC SODA Sodium Hydroxide	30%	1.33 at 65°F	-	9 at 65°F	-	-	-	-	-	-
	40%	1.43 at 65°F	-	24 at 65°F	-	-	-	-	-	-
GLYCERIN	99% Soluble	-	2,240	475	250	130	59	28	16	8.5
GLICERIN	100%	1.25 at 68°F	4,460	880	357	171	68	28	16	8.3
	Propylene	1.038 at 68 °F	-	50 at	:70°F	-	-	-	-	-
GLYCOL	Trienthylene	1.125 at 68°F	-	39 at	70°F	-	-	-	-	-
GLICUL	Diethylene	1.120	-	32 at	70°F	-	-	-	-	-
	Ethylene	1.125	-	19 at	:70°F	-	-	-	-	-
INK	Newspaper	-	13,650	4,250	2,200	950	500	215	105	59
INK	Printers	1.00-1.38	-	21,000	6,630	2,265	800	231	88	42
	A. Maximum	1.40-1.46	8,925	4,725	3,150	2,200	1,240	-	-	-
	A. Maximum	1.40-1.40	1,950	755	440	273	150	-	-	-
MOLASSES	B. Maximum	1.43-1.48	-	-	-	12,600	3,150	-	-	-
MULASSES	B. Maximum	1.45-1.40	14,700	4,620	2,290	1,400	630	-	-	-
	C. Maximum	1.40.1.40	-	-	-	52,500	15,750	-	-	-
	C. Maximum	1.46-1.49	-	18,900	7,350	3,570	1,300	-	-	-
	Coconut	0.925	475	115	57	32	17	7	-	-
	Corn	0.924	452	155	87	52	30	17	8.5	-
	Cotton	0.88-0.925	334	110	62	37	22	11	-	-
	Gas	0.924	43	19	11	7	4	-	-	-
	Lard	0.912-0.925	294	117	71	46	29	17	8.5	-
OIL	Olive	0.912-0.918	320	115	67	42	25	15	8.3	-
	Palm	0.924	376	134	75	46	29	17	8.4	-
	Peanut	0.920	278	108	63	41	24	15	8.3	-
	Grape Seed	0.919	326	132	71	52	32	19	11	7
	Rosin	0.980	7,435	1,595	670	320	130	49	25	16
	Soy Bean	0.927-0.98	277	99	56	35	21	10	-	-
	Karo	-	-	12,600	3,255	1,050	273	74	30	-
	41° Baume	1.395	-	14,700	5,520	2,420	756	242	95	47
SYRUP	42° Baume	1.409	-	-	11,340	4,250	1,300	347	130	101
Corn	43° Baume	1.423	-	-	-	8,925	2,200	462	150	63
	44° Baume	1.437	-	-	-	-	4,725	830	220	81
	45° Baume	1.450	-	-	-	-	11,550	1,500	305	101
	60 Brix	1.290	347	73	34	19	85	4	-	-
	62 Brix	1.300	545	101	45	23	11	5	-	-
	64 Brix	1.310	925	154	63	32	15	5.5	-	-
	66 Brix	1.326	1,555	242	89	41	18	7	-	-
SYRUP Sugar	68 Brix	1.338	2,520	347	134	58	29	9	5	-
	70 Brix	1.350	5,880	650	220	85	32	12	5.5	-
	72 Brix	1.360	9,450	1,010	330	134	46	18	8.3	-
	74 Brix	1.376	-	2,420	640	242	71	29	10	5.5
	76 Brix	1.390	-	3,990	1,175	420	134	40	19	8.5

Checking Meter Model

BEARING	Carbon	PTFE
CONTINUOUS Duty operation	10 PSI	3.5 PSI
INTERMITTENT DUTY OPERATION	15 PSI	5.0 PSI

Viscosity Table

On higher viscosity liquids, ΔP value (Delta P= pressure loss across the flow meter) increases. This is an expression of a higher wear factor. Maximum allowable values depend upon bearing material in the oval gear, whether the meter will be used in continuous or intermittent duty (intermittent is defined as < 6 hours per day), and register torque requirements. Under normal operating conditions, it is recommended that the Delta P value be somewhat less than the maximum value allowed.

To calculate Delta P across the meter, first determine the fluid viscosity using the chart on pages 21-22 or on fluid manufacture's MSDs.

Using the Viscosity Correction Factor chart to the right, determine the Viscosity Correction Factor for your application. If exact viscosity is not listed use the next highest viscosity listed.

EXAMPLE

Lube Oil (5W20) at $0^{\circ}F = 800 \text{ cSt}$

800 cSt rounds up to 840 cSt so the viscosity correction factor is 5.00

Determine the maximum flow rate of your system. Using your max flow rate and the chart on <u>pages 30-33</u>, determine your Delta P on 1cP Viscosity. If your exact flow rate is not listed, choose the next highest listed flow rate.

EXAMPLE

Max flow rate = 23 GPM

Meter = TS10

Delta P reads 2.03 PSI

Multiply the viscosity correction factor by the Delta P:

 $5.00 \times 2.03 = 10.15 \text{ PSI}$

If corrected Delta P value exceeds limits shown above, there are 3 possible options:

- Reduce the flow rate
- Select a larger flow meter
- Increase minimum temperature to reduce the viscosity

Pressure Rating Table

Meter pressure rating depends on temperature and the pressure rating of the lowest rated component. The following tables below show the maximum operating pressure for a given operating temperature and component configuration (meter only, strainer, air eliminator, etc.)

VISCOSITY CORRECTION FACTOR CHART

VISCO	OSITY	VISCOSITY CORRECTION FACTOR				
SSU	cSt	LV ROTORS	HV ROTORS			
40	4	1.08	-			
50	7	10	-			
60	10	1.20	-			
70	15	1.30	-			
80	17	1.40	-			
90	19	1.45	-			
100	22	1.50	-			
125	27	1.59	-			
150	32	1.70	-			
175	37	1.79	-			
200	42	1.90	-			
250	52	2.00	-			
300	63	2.10	-			
350	74	2.20	-			
400	85	2.30	-			
450	95	2.42	-			
500	105	2.55	-			
600	126	2.75	-			
700	147	2.90	-			
800	168	3.05	-			
900	189	3.15	-			
1,000	210	3.30	3.10			
1,500	315	3.95	3.50			
2,000	420	4.60	3.90			
3,000	630	-	4.50			
4,000	840	-	5.00			
5,000	1,050	-	5.30			
6,000	1,260	-	5.80			
7,000	1,470	-	6.05			
8,000	1,680	-	6.25			
9,000	1,890	-	6.50			
10,000	2,100	-	6.80			
15,000	3,150	-	7.70			
20,000	4,200	-	8.70			
30,000	6,300	-	10.00			
40,000	8,400	-	11.00			
60,000	12,600	-	12.52			
80,000	16,800	-	13.70			
100,000	21,000	-	15.00			
150,000	31,500	-	17.00			
200,000	42,000	-	19.00			
300,000	63,000	-	21.00			
400,000	84,000	-	23.00			
500,000	105,000	-	25.00			
			بيللق			

ALUMINUM METERS —

°F	°C	ANODIZED Aluminum	CS ANSI Adapter
100	38	100%	100%
150	66	89%	94%
200	93	79%	90%
225	107	75%	88%
250	121	71%	84%
275	135	62%	81%
300	150	43%	43%

	ELECTRONIC METERS							
	ONLY OR Trainer	METER + Steel Flan	. ANSI	OF AIR EL	R + ANY COMBO Nir Eliminator Preset Valve			
PSI	BAR	PSI	BAR	PSI	BAR			
400	27	290	20	150	10			
356	24.5	273	18.8	134	9			
316	21	261	18	119	8			
300	20	255	17.6	113	7			
284	19.6	244	16.8	107	7			
248	17	235	16.2	93	6			
172	11	125	8.6	65	4			

MECHANICAL METERS							
METER	R ONLY	METER + Steel Fla		OF STRAI Elimina	NY COMBO Ner, Air Tor, Or T valve		
PSI	BAR	PSI	BAR	PSI	BAR		
150	10	150	10	150	10		
134	9	141	9	134	9		
119	8	135	9	119	8		
113	7	132	9	113	7		
107	7	126	8	107	7		
93	6	122	8	93	6		
65	4	65	4	65	4		

----- STAINLESS METERS -----

		STAINLESS	SS ANSI Adapter
°F	°C		
100	38	100%	100%
150	66	91%	89%
200	93	83%	82%
225	107	79%	80%
250	121	74%	78%
275	135	70%	76%
300	150	67%	74%

	ELECTRONIC METERS							
	ONLY OR Trainer	STAINLES	ER + SS STEEL Langes	METER + A Of Air el Or Pres				
PSI	BAR	PSI	BAR	PSI	BAR			
400	27	275	19	150	10			
364	25	245	16	137	9			
332	21	266	15	125	8			
316	21	220	15	119	8			
296	20	215	14	111	7			
280	19	209	14	105	7			
268	18	204	14	101	6			

MECHANICAL METERS							
METEI	R ONLY	METI STAINLES	ER + SS STEEL Lange	METER + A Of Strai	INY COMBO Iner, Air Itor, Or I valve		
PSI	BAR	PSI	BAR	PSI	BAR		
150	10	150	10	150	10		
137	9	134	9	137	9		
125	8	123	8	125	8		
119	8	120	8	119	8		
111	7	117	8	111	7		
105	7	114	7	105	7		
101	6	111	7	101	6		

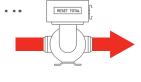
----- TS SERIES RATIO GEAR PLATES | MECHANICAL METERS ----

			PACKING	GEAR		GI	EAR # ON RAT	TIO GEAR PLA	TE			
METER Model	UNIT	INTERNAL REDUCTION	GLAND	PLATE	A	В	C	D	E	F	SHORT (STANDARD)	UP/DOWN GEAR Plate (Preset)
MODEL		REDOUTION	RATIO	PATTERN	#1	#2	#3	#4	#5	#6	(OTANDAND)	TERIE (FREGET)
	1/10 Gallon	12:1	2:1	А	54	64	-	-	-	-	GPTS10T2-1	-
TS10A	Liter	12:1	2:1	С	29	51	45	45	29	51	-	-
	1/10 Liter	12:1	1:1	С	52	29	47	47	52	29	GPTS10Y-1	-
	1/10 Gallon	12:1	2:1	Α	47	70	-	-	-	-	GP560T2-1	-
=0400		10.1	0.1	_	0.0				0.0			

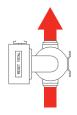
1/10 Liter

TS SERIES RATIO GEAR PLATES | MECHANICAL METERS

			PACKING	GEAR		GI	EAR # ON RAT	10 GEAR PLA	TE			
METER Model	UNIT	INTERNAL REDUCTION	GLAND	PLATE	Α	В	C	D	E	F	SHORT (STANDARD)	UP/DOWN GEAR Plate (Preset)
MODEL		REDUCTION	RATIO	PATTERN	#1	#2	#3	#4	#5	#6	(CIANDAND)	(,
	1/10 Gallon	12:1	1:1	A	70	48	-	-	-	-	GPTS15-70T2-1	GPTS15-70T2-1-UE
TS15A	Liter	12:1	2:1	A	42	75	-	-	-	-	GPTS15-70L2-1	GPTS15-0L2-1-UD
	1/10 Liter	12:1	-	-	-	-	-	-	-	-	-	-
TS15C	1/10 Gallon	12:1	2:1	А	66	52	-	-	-	-	GP580T2-1	PG580T2-1-UD
13136	Liter	12:1	2:1	В	28	57	57	58	-	-	GP580L2-1	GP580L2-UD
	1/10 Gallon	12:1	1:1	А	77	41	-	-	-	-	GPTS2HT1-1	GPTS2HT1-1-UD
TS20A	Whole Gallon	12:1	2:1	С	43	70	60	60	43	70	-	-
&	1/10 LPM Gallon	12:1	2:1	С	69	39	70	70	69	39	-	-
TS20C	Liter	12:1	1:1	А	49	69	-	-	-	-	GPTS2HL1-1	GPTS20L-UD
	Dekaliter	12:1	2:1	С	28	54	30	30	29	54	-	-
	1/10 Gallon	12:1	1:1	С	64	39	57	57	64	39	-	-
TS30A	Whole Gallon	12:1	2:1	А	41	76	-	-	-	-	GP5201G2-1	GP201G2-1-UD
& TS30C	Liter	12:1	1:1	А	59	58	-	-	-	-	GP590L2-1	GP590L2-1-UD
	Dekaliter	12:1	2:1	С	34	75	57	57	64	75	-	-


Installation & Start-Up

System Design


- Flow meter must be installed on output side of pump. PD meters are not designed for service on suction/vacuum side.
- Flow meter repeatability suffers if delivering liquid directly to atmosphere (open tank). Valves, hose, or other components provide back pressure, to keep meter full of product.
- Flow meters perform best under constant operating conditions. ••
- Design piping, so that the flow meter will be full of liquid at all times.

- Meters can be installed in vertical lines, only if the flow goes up.
 - TS20 & TS30 with any register
 - TS10 & TS15 only with remote electronic register
 - $-\,$ 1" and larger flow meters should be secured to a firm support

SYSTEM DESIGN CONSIDERATIONS

- Connections for calibration in place on operating liquid
- Isolation valves so meter can be serviced in place
- Install a bypass line in critical service installations, so flow can continue even while the flow meter is being serviced
- Thermal relief valves in pipe sections, which can be isolated between two closed valves
- A visible pressure gauge near the flow meter
- Allow at least 14" of space around the meter for removal cleaning of strainer basket
- If an air eliminator is included in the assembly, provide for collection of any product that might exit when the AE vents

Installation Recommendations

- Leave pipe protectors in flanges until ready to install
- Install flow meter with firm support and without pipe strain
- Flush the system prior to installing the flow meter. If not possible, install a strainer on the inlet side of the meter and clean after flushing

START-UP PROCEDURES

- Do not operate the flow meter on air
- Slowly fill the system with liquid to purge all air
- Slowly fill the flow meter with liquid, allowing time for liquid to fill meter end covers
- Gradually increase the flow rate to full system flow
- Calibrate the flow meter in place, on actual operating liquid

Failure to follow these instructions can result in serious damage to flow meter internals. That type of failure is not covered by product warranty.

Parts Orders/Meter Serial No.

Changes in technology and the philosophy of Continuous Improvement have brought changes to the Fill-Rite Oval Gear Meter lines over the years. To ensure receiving correct spare parts, it is imperative that every inquiry and purchase order for spare parts include the serial number of the flow meter.

On TS Series flow meters, the serial number is on the Spec Plate, which is attached on the side of the RAD register adapter.

Electronic registers are also updated regularly, so providing the serial number is critical as well. Separate Serial Numbers apply to the EMR⁴ electronic registers; please look at the register enclosure for the serial number for these products.

All Fill-Rite Oval Gear Meters are tested prior to shipment at the factory. However, test fluid on our flow bench is rarely the same liquid, as the one the flow meter will be used to measure in the field. *To ensure accurate measurement, it is required that every flow meter be re-calibrated after installation, on the actual liquid of service.*

Meter Calibration

Frequency

If the flow meter is used in Custody Transfer service (subject to Weights and Measures regulations), it must be re-calibrated in accordance with local W&M regulations. In most cases these regulations call for annual re-calibration.

If neither W&M regulations, nor internal standards apply, our recommendations are:

- A. Calibrate immediately after installation
- B. Re-calibrate after 15-30 days
- C. Re-calibrate after 180 & 360 days

Methods & Procedures

There are three common methods for re-calibration of flow meters:

- Certified prover tank
- Certified Master Meter
- Certified Scale

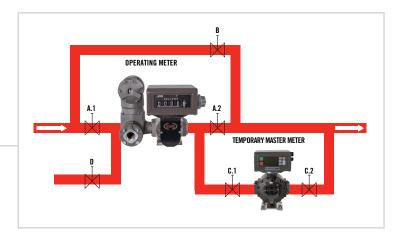
Re-calibration requires tests of at least 60 seconds duration. Reference NIST Handbook 44.

Recommended Piping & Calibration Connections

A.1 and A.2: Isolation valves (NO), so meter can be serviced

B: NC valve on optional by-pass line, permitting flow to continue while flow meter is being serviced

C.1 and C.2: NC valves on calibration connections


D: Thermal Relief valve, in case A and C are closed

Normal Operation: A open, B and C closed Flow meter service: A, B, and C closed Service with by-pass: B open, A and C closed

Meter Calibration: A1, C1 and C2 open, A2 and B are closed

METER TEST REPORT

Fill-Rite tests all flow meters prior to shipment. A Certified Test Certificate with actual test results is available at a fee (see current price list for prevailing rates), if requested in the purchase order.

System Air Elimination

General Comments

PD meters cannot tell the difference between liquid, air, or vapors. If air or vapor can occur in the lines, depending on flow volume, an air eliminator is required to avoid recording air/vapor as liquid.

- Standard air eliminators (AE) are installed on top of the strainer, and function based on a gravity principle. Therefore, the strainer/AE assembly must always be installed in a horizontal position in the system.
- When the air eliminator starts to vent, a few drops of product might exit through the vent port. The vents should be piped to storage or a collection tank, with lines sloping towards the tank.
- An AE performs best with some back pressure (8-10 PSI = 0.6+ BAR). This value is commonly reached between the flow meter, control valve, and a hose reel/hose. In systems with lesser differential, this effect can be achieved by adding a Back Pressure Valve between strainer and flow meter. Some regions have a regulatory demand for an Air Check Valve, which stops the flow when the air eliminator vents. When Air Check Valve is used, a Back Pressure Valve is not necessary.
- The AE depends upon air/vapors separating from the liquid during passage of the strainer. The higher the viscosity, the slower
 any air/vapor bubbles present will rise out of the liquid, so flow rate and liquid viscosity are very important factors in
 evaluation of likely AE efficiency.

General Rules Concerning Air Elimination

- Free air (ahead of the liquid) in most applications vent. The only exception to this is on extremely high viscosity liquids (molasses, asphalt, fuel oil No. 6, etc.), where the AE float may function less than desired if coated with the liquid
- Bubbles/entrained air will release freely from low viscosity liquids (alcohols, gasoline, and solvents)
- From medium viscosity liquids (such as diesel fuel & fuel oils Nos. 2-4), bubbles/entrained air will release freely at low velocity (flow rate vs. line diameter), but will not have time to do so in a standard strainer at higher velocities. A high capacity strainer may be required
- On higher viscosity liquids (>150 cSt = 700 SSU for this purpose), bubbles/entrained air will not have time to release from the liquid, unless a very large size holding tank is placed under the AE

Air Elimination Not Required

Air elimination is not required in these types of systems:

- When the liquid comes from an underground storage tank (UST), and is extracted with a submersible pump
- When the liquid comes from an aboveground storage tank (AST), which is fitted with a low level knock-off switch. Yet, if the installation is subject to W&M regulations, an air eliminator might still be required to satisfy those regulations
- Metering water directly from municipal supply, as lines are normally full of water

Truck Tank Systems

Here we have to distinguish between two types of tank trucks:

TANK TRUCK WITH A PUMP

Commonly used for retail delivery, these vehicles can have from 500-3,000 gallon (1,892-11,355 liter) tank capacity. While smaller vehicles might have a single compartment tank, most larger vehicles have multiple compartments.

In tank truck systems subject to W&M regulations, **an Air Eliminator is always required**. If the system must satisfy **Split Compartment Testing**, vehicle design (tanks, manifold, and pump) becomes a factor in the efficiency of the Air Eliminator.

Systems not designed to minimize the amount of air drawn into the pump increase the demand upon the AE supplied with the flow meter. On medium viscosity liquids such as diesel fuel and light fuel oils, a high capacity strainer might be required to give the air additional time to rise out of the liquid.

- On single compartment trucks, a standard AE will usually suffice. A back pressure valve (BPV) is recommended
- On gasoline and other low viscosity liquids, a standard AE will suffice. The BPV is recommended
- On diesel fuel/light fuel oils, the BPV is recommended. If the velocity exceeds 6 feet/s (180 cm/s), the high capacity strainer is required to satisfy split compartment testing. This limit translates to:

2" System	70 GPM	265 LPM
3" System	140 GPM	530 LPM

- On higher viscosity liquids (> 150 cSt = 700 SSU), effective air elimination is difficult/impossible. A high capacity strainer should perhaps be considered
- In truck systems where air is introduced repeatedly, such as when pumping out of drums or totes, Back Pressure Valve or Air Check Valve is mandatory

TANK TRUCK UNLOADING VIA GRAVITY FLOW

These tank trucks are much larger, and usually have 6 compartments. With bottom loading the piping system is 4", and gravity flow achieves flow rates up to 350 GPM (1,300 LPM).

Metering Product into Storage

There are 3 possible combinations of delivery system (truck) and receiving tank.

GRAVITY TRUCK INTO UNDERGROUND STORAGE TANK (UST)

It is very difficult to avoid recording some air as liquid in this type of system. When the liquid level in the tank truck drops towards empty, a vortex forms above the drain, pulling air into the discharge line.

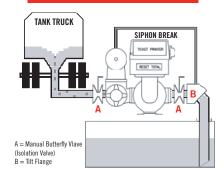
Further, since most USTs have a drop tube (to avoid splashing the product into the tank), a siphon effect is created, where liquid/air mixture is pulled through the flow meter. To minimize this effect, install a siphon break (connection) between the AE vent port, and piping just downstream of the flow meter.

If the flow meter is portable (brought out when deliveries arrive), a tilt flange (B) is recommended. This allows the flow meter to be drained of product at the end of the delivery. If the flow meter is installed permanently at the delivery point, this option is not necessary.

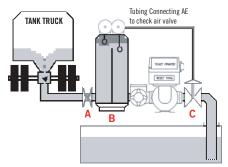
TRUCK WITH PUMP INTO UNDERGROUND STORAGE TANK

Here the situation becomes more complex. When air starts getting into the discharge line, the pump will mix the air into the liquid. In the case of diesel fuel & fuel oil, what arrives at the flow meter is more like a 'foam'. A standard AE cannot get rid of air in this state.

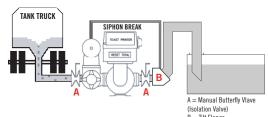
The ideal installation to deal with this situation requires some additional components (currently not available from Fill-Rite).


TRUCK WITH PUMP INTO ABOVEGROUND STORAGE TANK (AST)

This variation is similar to the truck with pump into underground storage tank.



GRAVITY TRUCK INTO UNDERGROUND STORAGE TANK



TRUCK WITH PUMP INTO **UNDERGROUND STORAGE TANK**

A = Swing Check Valve(Isolation Valve) B = Bulk Plant Air Eliminator (Dual Head)*
C = Air Check Valve

TRUCK WITH PUMP INTO **ABOVEGROUND STORAGE TANK**

(Isolation Valve) B = Tilt Flange

Conversion Tables

- VOLUME -

US GPM	US GPH	LPM	M³/H	IMP GPM	IMP GPH	BPD
0.02	1.0	0.076	0.0045	0.02	1.0	0.7
0.04	2.0	0.151	0.0091	0.03	2.0	1.4
0.06	4.0	0.227	0.0136	0.05	3.0	2.1
80.0	5.0	0.303	0.0182	0.07	4.0	2.7
0.10	6.0	0.379	0.023	0.08	5.0	3.4
0.15	9.0	0.568	0.034	0.12	7.0	5.1
0.2	12	0.757	0.045	0.17	10	6.9
0.4	24	1.51	0.091	0.33	20	14
0.6	36	2.27	0.136	0.5	30	21
0.8	48	3.03	0.182	0.67	40	27
1.0	60	3.79	0.227	0.83	50	34
2	120	7.57	0.45	1.7	100	69
4	240	15.2	0.91	3.3	200	137
6	360	22.7	1.36	5.0	300	206
8	480	30.3	1.82	6.7	400	274
10	600	38	2.27	8.3	500	343
15	900	57	3.41	12	749	514
20	1,200	76	4.54	17	999	686
25	1,500	95	5.7	21	1,249	857
30	1,800	114	6.8	25	1,499	1,029
40	2,400	151	9.1	33	1,998	1,371
50	3,000	189	11.4	42	2,498	1,714
60	3,600	227	13.6	50	2,998	2,057
80	4,800	303	18.2	67	3,997	2,743
90	5,400	341	20.4	75	4,497	3,086
100	6,000	379	23	83	4,996	3,429
110	6,600	416	25	92	5,496	3,771
120	7,200	454	27	100	5,995	4,114
130	7,800	492	30	108	6,495	4,457
140	8,400	530	32	117	6,995	4,800

- PRESSURE —

PSI	BAR	KG/CM	kPa	Мра
5	0.3	0.4	34	0.03
10	0.7	0.7	69	0.07
15	1.0	1.1	103	0.10
20	1.1	1.4	138	0.14
25	1.4	1.8	172	0.17
30	1.8	2.1	207	0.21
35	2.1	2.5	241	0.24
40	2.4	2.8	276	0.28
45	3.1	3.2	310	0.31
50	3.4	3.5	345	0.35
55	3.8	3.9	379	0.38
60	4.1	4.2	414	0.41
65	4.5	4.6	448	0.45
70	4.8	4.9	483	0.48
75	5.2	5.3	517	0.52
80	5.5	5.6	552	0.55
85	5.9	6.0	586	0.59
90	6.2	6.3	621	0.62
95	6.6	6.7	655	0.66
100	6.9	7.0	690	0.69
125	8.6	8.8	862	0.86
150	10.3	10.5	1,034	1.03
175	12	12	1,207	1.21
200	14	14	1,379	1.38
225	16	16	1,551	1.55
250	17	18	1,724	1.72
275	19	19	1,896	1.90
300	21	21	2,069	2.07

TEMPERATURE

°F	°C
-40	-40
-30	-34.4
-20	-28.9
-10	-23.3
0	-17.8
10	-12.2
20	-6.7
30	-1.1
40	4.4
50	10.0
60	15.6
70	21.1
80	26.7
90	32.2
100	37.8
110	43.3
120	48.9
130	54.4
140	60.0
150	65.6
160	71.1
170	76.7
180	82.2
190	87.8
200	93.3

VOLUME

US GPM	US GPH	LPM	M³/H	IMP GPM	IMP GPH	BPD
150	9,000	568	34	125	7,494	5,143
160	9,600	606	36	133	7,994	5,486
180	10,800	681	41	150	8,993	6,171
190	11,400	719	43	158	9,493	6,514
200	12,000	757	45	167	9,992	6,857
210	12,600	795	48	175	10,492	7,200
220	13,200	833	50	183	10,991	7,543
230	13,800	871	52	192	11,491	7,886
240	14,400	908	55	200	11,991	8,229
250	15,000	946	57	208	12,490	8,571
260	15,600	984	59	216	12,990	8,914
270	16,200	1,022	61	225	13,490	9,257
280	16,800	1,060	64	233	13,989	9,600
290	17,400	1,098	66	241	14,489	9,943
300	18,000	1,136	68	250	14,988	10,286
325	19,500	1,230	74	271	16,237	11,143
350	21,000	1,325	79	291	17,486	12,000
375	22,500	1,420	85	312	18,735	12,857
400	24,000	1,514	91	333	19,985	13,714
425	25,500	1,609	97	354	21,234	14,571
450	27,000	1,703	102	375	22,483	15,429

PRESSURE —

PSI	BAR	KG/CM	kPa	Мра
325	22	23	2,241	2.24
350	24	25	2,413	2.41
375	26	26	2,586	2.59
400	28	28	2,758	2.76
500	34	35	3,448	3.45
600	41	42	4,137	4.14
700	48	49	4,827	4.83
800	55	56	5,516	5.52
900	62	63	6,206	6.21
1,000	69	70	6,895	6.90
1,100	76	77	7,585	7.59
1,200	83	84	8,274	8.27
1,300	90	91	8,964	8.96
1,400	97	98	9,653	9.65
1,500	103	105	10,343	10.34
2,500	172	172	17,238	17.24
5,000	345	345	34,475	34.48

rTEMPERATURE₁

°F	°C
210	98.9
220	104.4
230	110.0
240	115.6
250	121.1
260	126.7
270	132.2
280	137.8
290	143.3
300	148.9

TS Meter Series - Gallons

Delta P on 1cPn Viscosity

— TS30 ——

T\$10					
FLOW IN %	MECHANICAL & ELECTRONIC: 40 GPM				
OF NOM	GPM	GPH	BPD	ΔP PSI	
2	0.8	48	27	0.27	
4	1.6	96	55	0.29	
6	2.4	144	82	0.30	
8	3.2	192	110	0.32	
10	4.0	240	137	0.35	
12	4.8	288	165	0.39	
14	5.6	336	192	0.44	
16	6.4	384	219	0.49	
18	7.2	432	247	0.53	
20	8.0	480	274	0.58	
22	8.8	528	302	0.64	
24	9.6	576	329	0.70	
26	10.4	624	357	0.77	
28	11.2	672	384	0.84	
30	12.0	720	411	0.92	
32	12.8	768	439	0.99	
34	13.6	816	466	1.06	
36	14.4	864	494	1.14	
38	15.2	912	521	1.22	
40	16.0	960	549	1.30	

	12	15				
MECHANICAL & ELECTRONIC: 60 GPM						
GPM	GPH	BPD	ΔP PSI			
1.2	72	41	0.14			
2.4	144	82	0.15			
3.6	216	123	0.16			
4.8	288	165	0.17			
6.0	360	206	0.18			
7.2	432	247	0.21			
8.4	504	288	0.23			
9.6	576	329	0.26			
10.8	648	370	0.28			
12.0	720	411	0.30			
13.2	792	453	0.33			
14.4	864	494	0.37			
15.6	936	535	0.41			
16.8	1008	576	0.45			
18.0	1080	617	0.50			
19.2	1152	658	0.53			
20.4	1224	699	0.58			
21.6	1296	741	0.62			
22.8	1368	782	0.67			
24.0	1440	823	0.72			

	10	20	ı		
MECHANICAL & ELECTRONIC: 150 GPM					
GPM	GPH	BPD	ΔP PSI		
3	180	103	0.14		
6	360	206	0.15		
9	540	309	0.16		
12	720	411	0.17		
15	900	514	0.19		
18	1080	617	0.22		
21	1260	720	0.25		
24	1440	823	0.28		
27	1620	926	0.31		
30	1800	1029	0.33		
33	1980	1131	0.37		
36	2160	1234	0.41		
39	2340	1337	0.46		
42	2520	1440	0.51		
45	2700	1543	0.55		
48	2880	1646	0.60		
51	3060	1749	0.65		
54	3240	1851	0.71		
57	3420	1954	0.76		
60	3600	2057	0.82		

MECHANICAL & ELECTRONIC: 200 GPM						
GPM	GPH	BPD	ΔP PSI			
4	240	137	0.15			
8	480	274	0.16			
12	720	411	0.17			
16	960	549	0.18			
20	1200	686	0.20			
24	1440	823	0.23			
28	1680	960	0.26			
32	1920	1097	0.29			
36	2160	1234	0.32			
40	2400	1371	0.35			
44	2640	1509	0.39			
48	2880	1646	0.43			
52	3120	1783	0.48			
56	3360	1920	0.53			
60	3600	2057	0.58			
64	3840	2194	0.63			
68	4080	2331	0.68			
72	4320	2469	0.74			
76	4560	2606	0.80			
80	4800	2743	0.86			

- TS30 -

42 16.8 1008 576 44 17.6 1056 603 46 18.4 1104 631 48 19.2 1152 658 50 20.0 1200 686 52 20.8 1248 713 54 21.6 1296 741 56 22.4 1344 768 58 23.2 1392 795 60 24.0 1440 823 62 24.8 1488 850 64 25.6 1536 878 66 26.4 1584 905 68 27.2 1632 933 70 28.0 1680 960 72 28.8 1728 987 74 29.6 1776 1015 76 30.4 1824 1042 78 31.2 1872 1070 80 32.0 19	P PSI 1.38 1.46 1.53 1.61 1.53 1.61 1.58 1.77 1.86 1.94 2.03 2.11 2.19 2.28 2.37 2.46 2.73 2.81 2.90
42	1.38 1.46 1.53 1.61 1.68 1.77 1.86 1.94 2.03 2.11 2.19 2.28 2.37 2.46 2.55 2.64 2.73 2.90
44 17.6 1056 603 46 18.4 1104 631 48 19.2 1152 658 50 20.0 1200 686 52 20.8 1248 713 54 21.6 1296 741 56 22.4 1344 768 58 23.2 1392 795 60 24.0 1440 823 62 24.8 1488 850 64 25.6 1536 878 66 26.4 1584 905 68 27.2 1632 933 70 28.0 1680 960 72 28.8 1728 987 74 29.6 1776 1015 76 30.4 1824 1042 78 31.2 1872 1070 80 32.0 1920 1097 82 32.8 1968 1125 84 33.6 2016 1152	1.46 1.53 1.61 1.68 1.77 1.86 1.94 2.03 2.11 2.19 2.28 2.37 2.46 2.55 2.64 2.73 2.81
46 18.4 1104 631 48 19.2 1152 658 50 20.0 1200 686 52 20.8 1248 713 54 21.6 1296 741 56 22.4 1344 768 58 23.2 1392 795 60 24.0 1440 823 62 24.8 1488 850 64 25.6 1536 878 66 26.4 1584 905 68 27.2 1632 933 70 28.0 1680 960 72 28.8 1728 987 74 29.6 1776 1015 76 30.4 1824 1042 78 31.2 1872 1070 80 32.0 1920 1097 82 32.8 1968 1125 84 33.6	1.53 1.61 1.68 1.77 1.86 1.94 2.03 2.11 2.19 2.28 2.37 2.46 2.55 2.64 2.73 2.90
48 19.2 1152 658 50 20.0 1200 686 52 20.8 1248 713 54 21.6 1296 741 56 22.4 1344 768 58 23.2 1392 795 60 24.0 1440 823 62 24.8 1488 850 64 25.6 1536 878 66 26.4 1584 905 68 27.2 1632 933 70 28.0 1680 960 72 28.8 1728 987 74 29.6 1776 1015 76 30.4 1824 1042 78 31.2 1872 1070 80 32.0 1920 1097 82 32.8 1968 1125 84 33.6 2016 1152 86 34.4 <td< td=""><td>1.61 1.68 1.77 1.86 1.94 2.03 2.11 2.19 2.28 2.37 2.46 2.55 2.64 2.73 2.81</td></td<>	1.61 1.68 1.77 1.86 1.94 2.03 2.11 2.19 2.28 2.37 2.46 2.55 2.64 2.73 2.81
50 20.0 1200 686 52 20.8 1248 713 54 21.6 1296 741 56 22.4 1344 768 58 23.2 1392 795 60 24.0 1440 823 62 24.8 1488 850 64 25.6 1536 878 66 26.4 1584 905 68 27.2 1632 933 70 28.0 1680 960 72 28.8 1728 987 74 29.6 1776 1015 76 30.4 1824 1042 78 31.2 1872 1070 80 32.0 1920 1097 82 32.8 1968 1125 84 33.6 2016 1152 86 34.4 2064 1179 88 35.2 <t< td=""><td>1.68 1.77 1.86 1.94 2.03 2.11 2.19 2.28 2.37 2.46 2.55 2.64 2.73 2.81</td></t<>	1.68 1.77 1.86 1.94 2.03 2.11 2.19 2.28 2.37 2.46 2.55 2.64 2.73 2.81
52 20.8 1248 713 54 21.6 1296 741 56 22.4 1344 768 58 23.2 1392 795 60 24.0 1440 823 62 24.8 1488 850 64 25.6 1536 878 66 26.4 1584 905 68 27.2 1632 933 70 28.0 1680 960 72 28.8 1728 987 74 29.6 1776 1015 76 30.4 1824 1042 78 31.2 1872 1070 80 32.0 1920 1097 82 32.8 1968 1125 84 33.6 2016 1152 86 34.4 2064 1179 88 35.2 2112 1207 90 36.0 <	1.77 1.86 1.94 2.03 2.11 2.19 2.28 2.28 2.37 2.46 2.55 2.64 2.73 2.81
54 21.6 1296 741 56 22.4 1344 768 58 23.2 1392 795 60 24.0 1440 823 62 24.8 1488 850 64 25.6 1536 878 66 26.4 1584 905 68 27.2 1632 933 70 28.0 1680 960 72 28.8 1728 987 74 29.6 1776 1015 76 30.4 1824 1042 78 31.2 1872 1070 80 32.0 1920 1097 82 32.8 1968 1125 84 33.6 2016 1152 86 34.4 2064 1179 88 35.2 2112 1207 90 36.0 2160 1234 92 36.8	1.86 1.94 2.03 2.11 2.19 2.28 2.37 2.46 2.55 2.64 2.73 2.81
56 22.4 1344 768 58 23.2 1392 795 60 24.0 1440 823 62 24.8 1488 850 64 25.6 1536 878 66 26.4 1584 905 68 27.2 1632 933 70 28.0 1680 960 72 28.8 1728 987 74 29.6 1776 1015 76 30.4 1824 1042 78 31.2 1872 1070 80 32.0 1920 1097 82 32.8 1968 1125 84 33.6 2016 1152 86 34.4 2064 1179 88 35.2 2112 1207 90 36.0 2160 1234 92 36.8 2208 1262 94 37.6	1.94 2.03 2.11 2.19 2.28 2.37 2.46 2.55 2.64 2.73 2.81 2.90
58 23.2 1392 795 60 24.0 1440 823 62 24.8 1488 850 64 25.6 1536 878 66 26.4 1584 905 68 27.2 1632 933 70 28.0 1680 960 72 28.8 1728 987 74 29.6 1776 1015 76 30.4 1824 1042 78 31.2 1872 1070 80 32.0 1920 1097 82 32.8 1968 1125 84 33.6 2016 1152 86 34.4 2064 1179 88 35.2 2112 1207 90 36.0 2160 1234 92 36.8 2208 1262 94 37.6 2256 1289 96 38.4	2.03 2.11 2.19 2.28 2.37 2.46 2.55 2.64 2.73 2.81 2.90
60 24.0 1440 823 62 24.8 1488 850 64 25.6 1536 878 66 26.4 1584 905 68 27.2 1632 933 70 28.0 1680 960 72 28.8 1728 987 74 29.6 1776 1015 76 30.4 1824 1042 78 31.2 1872 1070 80 32.0 1920 1097 82 32.8 1968 1125 84 33.6 2016 1152 86 34.4 2064 1179 88 35.2 2112 1207 90 36.0 2160 1234 92 36.8 2208 1262 94 37.6 2256 1289 96 38.4 2304 1317	2.11 2.19 2.28 2.37 2.46 2.55 2.64 2.73 2.81 2.90
62 24.8 1488 850 64 25.6 1536 878 66 26.4 1584 905 68 27.2 1632 933 70 28.0 1680 960 72 28.8 1728 987 74 29.6 1776 1015 76 30.4 1824 1042 78 31.2 1872 1070 80 32.0 1920 1097 82 32.8 1968 1125 84 33.6 2016 1152 86 34.4 2064 1179 88 35.2 2112 1207 90 36.0 2160 1234 92 36.8 2208 1262 94 37.6 2256 1289 96 38.4 2304 1317	2.19 2.28 2.37 2.46 2.55 2.64 2.73 2.81 2.90
64 25.6 1536 878 66 26.4 1584 905 68 27.2 1632 933 70 28.0 1680 960 72 28.8 1728 987 74 29.6 1776 1015 76 30.4 1824 1042 78 31.2 1872 1070 80 32.0 1920 1097 82 32.8 1968 1125 84 33.6 2016 1152 86 34.4 2064 1179 88 35.2 2112 1207 90 36.0 2160 1234 92 36.8 2208 1262 94 37.6 2256 1289 96 38.4 2304 1317	2.28 2.37 2.46 2.55 2.64 2.73 2.81 2.90
66 26.4 1584 905 68 27.2 1632 933 70 28.0 1680 960 72 28.8 1728 987 74 29.6 1776 1015 76 30.4 1824 1042 78 31.2 1872 1070 80 32.0 1920 1097 82 32.8 1968 1125 84 33.6 2016 1152 86 34.4 2064 1179 88 35.2 2112 1207 90 36.0 2160 1234 92 36.8 2208 1262 94 37.6 2256 1289 96 38.4 2304 1317	2.37 2.46 2.55 2.64 2.73 2.81 2.90
68 27.2 1632 933 70 28.0 1680 960 72 28.8 1728 987 74 29.6 1776 1015 76 30.4 1824 1042 78 31.2 1872 1070 80 32.0 1920 1097 82 32.8 1968 1125 84 33.6 2016 1152 86 34.4 2064 1179 88 35.2 2112 1207 90 36.0 2160 1234 92 36.8 2208 1262 94 37.6 2256 1289 96 38.4 2304 1317	2.46 2.55 2.64 2.73 2.81 2.90
70 28.0 1680 960 72 28.8 1728 987 74 29.6 1776 1015 76 30.4 1824 1042 78 31.2 1872 1070 80 32.0 1920 1097 82 32.8 1968 1125 84 33.6 2016 1152 86 34.4 2064 1179 88 35.2 2112 1207 90 36.0 2160 1234 92 36.8 2208 1262 94 37.6 2256 1289 96 38.4 2304 1317	2.55 2.64 2.73 2.81 2.90
72 28.8 1728 987 74 29.6 1776 1015 76 30.4 1824 1042 78 31.2 1872 1070 80 32.0 1920 1097 82 32.8 1968 1125 84 33.6 2016 1152 86 34.4 2064 1179 88 35.2 2112 1207 90 36.0 2160 1234 92 36.8 2208 1262 94 37.6 2256 1289 96 38.4 2304 1317	2.64 2.73 2.81 2.90
74 29.6 1776 1015 76 30.4 1824 1042 78 31.2 1872 1070 80 32.0 1920 1097 82 32.8 1968 1125 84 33.6 2016 1152 86 34.4 2064 1179 88 35.2 2112 1207 90 36.0 2160 1234 92 36.8 2208 1262 94 37.6 2256 1289 96 38.4 2304 1317	2.73 2.81 2.90
74 29.6 1776 1015 76 30.4 1824 1042 78 31.2 1872 1070 80 32.0 1920 1097 82 32.8 1968 1125 84 33.6 2016 1152 86 34.4 2064 1179 88 35.2 2112 1207 90 36.0 2160 1234 92 36.8 2208 1262 94 37.6 2256 1289 96 38.4 2304 1317	2.73 2.81 2.90
76 30.4 1824 1042 78 31.2 1872 1070 80 32.0 1920 1097 82 32.8 1968 1125 84 33.6 2016 1152 86 34.4 2064 1179 88 35.2 2112 1207 90 36.0 2160 1234 92 36.8 2208 1262 94 37.6 2256 1289 96 38.4 2304 1317	2.81 2.90
78 31.2 1872 1070 80 32.0 1920 1097 82 32.8 1968 1125 84 33.6 2016 1152 86 34.4 2064 1179 88 35.2 2112 1207 90 36.0 2160 1234 92 36.8 2208 1262 94 37.6 2256 1289 96 38.4 2304 1317	2.90
80 32.0 1920 1097 82 32.8 1968 1125 84 33.6 2016 1152 86 34.4 2064 1179 88 35.2 2112 1207 90 36.0 2160 1234 92 36.8 2208 1262 94 37.6 2256 1289 96 38.4 2304 1317	
82 32.8 1968 1125 84 33.6 2016 1152 86 34.4 2064 1179 88 35.2 2112 1207 90 36.0 2160 1234 92 36.8 2208 1262 94 37.6 2256 1289 96 38.4 2304 1317	2.98
84 33.6 2016 1152 86 34.4 2064 1179 88 35.2 2112 1207 90 36.0 2160 1234 92 36.8 2208 1262 94 37.6 2256 1289 96 38.4 2304 1317	3.07
86 34.4 2064 1179 88 35.2 2112 1207 90 36.0 2160 1234 92 36.8 2208 1262 94 37.6 2256 1289 96 38.4 2304 1317	3.17
88 35.2 2112 1207 90 36.0 2160 1234 92 36.8 2208 1262 94 37.6 2256 1289 96 38.4 2304 1317	3.27
90 36.0 2160 1234 92 36.8 2208 1262 94 37.6 2256 1289 96 38.4 2304 1317	
92 36.8 2208 1262 94 37.6 2256 1289 96 38.4 2304 1317	3.37
94 37.6 2256 1289 96 38.4 2304 1317	3.48
96 38.4 2304 1317	3.59
	3.70
98 39,7 7357 1344	3.81
	3.93
	4.05
102	-
104	-
106	-
108	-
110	-
112	-
114	-
116	-
118	-
120	-
122	-
124	-
126	-
128	-
130	
132	-
134	-
136	-
138	-
140	- - - -

— TS	ון ו			— TS	13 —	
NICAL & EL	ECTRONIC: 40 (GPM .	MEG	CHANICAL & EL	ECTRONIC: 60 (GPM .
GPH	BPD	ΔP PSI	GPM	GPH	BPD	ΔP PSI
1008	576	1.38	25.2	1512	864	0.77
1056	603	1.46	26.4	1584	905	0.81
1104	631	1.53	27.6	1656	946	0.86
1152	658	1.61	28.8	1728	987	0.90
1200	686	1.68	30.0	1800	1029	0.95
1248	713	1.77	31.2	1872	1070	1.00
1296	741	1.86	32.4	1944	1111	1.06
1344	768	1.94	33.6	2016	1152	1.10
1392	795	2.03	34.8	2088	1193	1.16
1440	823	2.11	36.0	2160	1234	1.21
1488	850	2.19	37.2	2232	1275	1.26
1536	878	2.28	38.4	2304	1317	1.32
1584	905	2.37	39.6	2376	1358	1.38
1632	933	2.46	40.8	2448	1399	1.43
1680	960	2.55	42.0	2520	1440	1.50
1728	987	2.64	43.2	2592		1.55
1776	1015	2.73	44.4	2664	1522	1.61
1824	1042	2.81	45.6	2736	1563	1.66
1872	1070	2.90	46.8	2808	1605	1.72
1920	1097	2.98	48.0	2880	1646	1.77
1968	1125	3.07	49.2	2952	1687	1.84
2016	1152	3.17	50.4	3024	1728	1.89
2064	1179	3.27	51.6	3096	1769	1.97
2112	1207	3.37	52.8	3168	1810	2.03
2160	1234	3.48	54.0	3240	1851	2.11
2208	1262	3.59	55.2	3312	1893	2.17
2256	1289	3.70	56.4	3384	1934	2.26
2304	1317	3.81	57.6	3456	1975	2.32
2352	1344	3.93	58.8	3528	2016	2.41
2400	1371	4.05	60.0	3600	2057	2.48
-	-	-	61.2	3672	2098	2.57
-	-	-	62.4	3744	2139	2.67
-	-	-	63.6	3816	2181	2.76
-	-	-	64.8	3888	2222	2.86
-	-	-	66.0	3960	2263	2.96
-	-	-	67.2	4032	2304	3.07
-	-	-	68.4	4104	2345	3.19
-	-	-	69.6	4176	2386	3.32
-	-	-	70.8	4248	2427	3.45
-	-	-	72.0	4320	2469	3.59
-	-	-	73.2	4392	2510	3.74
-	-	-	74.4	4464	2551	3.90
-	-	-	75.6	4536	2592	4.08
-			76.8	4608	2633	4.27
-	-	-	78.0	4680	2674	4.48
-	-	-	79.2	4752	2715	4.71
-	-		80.4	4824	2757	4.96
_			81.6	4896	2798	5.21
			82.8	4968	2839	5.46
-			02.0	1300	2000	0.40

T\$20				
MEC	HANICAL & ELE	CTRONIC: 150	GPM	
GPM	GPH	BPD	ΔP PSI	
63	3780	2160	0.88	
66	3960	2263	0.94	
69	4140	2366	0.99	
72	4320	2469	1.05	
75	4500	2571	1.11	
78	4680	2674	1.17	
81	4860	2777	1.24	
84	5040	2880	1.31	
87	5220	2983	1.38	
90	5400	3086	1.44	
93	5580	3189	1.51	
96	5760	3291	1.59	
99	5940	3394	1.66	
102	6120	3497	1.74	
105	6300	3600	1.81	
108	6480	3703	1.89	
111	6660	3806	1.97	
114	6840	3909	2.04	
117	7020	4011	2.12	
120	7200	4114	2.20	
123	7380	4217	2.28	
126	7560	4320	2.37	
129	7740	4423	2.46	
132	7920	4526	2.56	
135	8100	4629	2.65	
138	8280	4731	2.76	
141	8460	4834	2.87	
144	8640	4937	2.97	
147	8820	5040	3.08	
	9000	5143	3.20	
150				
153	9180	5246	3.31	
156	9360	5349	3.44	
159	9540	5451	3.56	
162	9720	5554	3.69	
165	9900	5657	3.82	
168	10080	5760	3.96	
171	10260	5863	4.12	
174	10440	5966	4.28	
177	10620	6069	4.45	
180	10800	6171	4.63	
183	10980	6274	4.83	
186	11160	6377	5.04	
189	11340	6480	5.26	
192	11520	6583	5.49	
195	11700	6686	5.73	
198	11880	6789	5.99	
201	12060	6891	6.26	
204	12240	6994	6.56	
207	12420	7097	6.88	
210	12600	7200	7.21	

MECHANICAL & ELECTRONIC: 200 GPM					
GPM	GPH	BPD	ΔP PSI		
84	5040	2880	0.92		
88	5280	3017	0.98		
92	5520	3154	1.04		
96	5760	3291	1.10		
100	6000	3429	1.16		
104	6240	3566	1.23		
108	6480	3703	1.30		
112	6720	3840	1.37		
116	6960	3977	1.44		
120	7200	4114	1.51		
124	7440	4251	1.58		
128	7680	4389	1.66		
132	7920	4526	1.74		
136	8160	4663	1.82		
140	8400	4800	1.90		
144	8640	4937	1.98		
148	8880	5074	2.06		
152	9120	5211	2.14		
156	9360	5349	2.22		
160	9600	5486	2.30		
164	9840	5623	2.39		
168	10080	5760	2.48		
172	10320	5897	2.58		
176	10560	6034	2.68		
180	10800	6171	2.78		
184	11040	6309	2.89		
188	11280	6446	3.00		
192	11520	6583	3.11		
196	11760	6720	3.23		
200	12000	6857	3.35		
204	12240	6994	3.47		
208	12480	7131	3.60		
212	12720	7269	3.73		
216	12960	7406	3.86		
220	13200	7543	4.00		
224	13440	7680	4.15		
228	13680	7817	4.31		
232	13920	7954	4.48		
236	14160	8091	4.66		
240	14400	8229	4.85		
244	14640	8366	5.06		
248	14880	8503	5.28		
252	15120	8640	5.51		
256	15360	8777	5.75		
260	15600	8914	6.00		
264	15840	9051	6.27		
268	16080	9189	6.56		
272	16320	9326	6.87		
276	16560	9463	7.20		
280	16800	9600	7.55		

	1210				
FLOW IN % OF NOM	MECHANICAL & ELECTRONIC: 40 GPM				
	GPM	GPH	BPD	ΔP PSI	
42	-	-	-	-	
44	-	-	-	-	
46	-	-	-	-	
48	-	-	-	-	
50	-	-	-	-	

T\$15 — — — — — — — — — — — — — — — — — — —				
MECHANICAL & ELECTRONIC: 60 GPM				
GPM	GPH	BPD	ΔP PSI	
85.2	5112	2921	5.96	
86.4	5184	2962	6.21	
87.6	5256	3003	6.46	
88.8	5328	3045	6.71	
90.0	5400	3086	6.96	

1320				
MECHANICAL & ELECTRONIC: 150 GPM				
GPM	GPH	BPD	ΔP PSI	
213	12780	7303	7.56	
216	12960	7406	7.95	
219	13140	7509	8.35	
222	13320	7611	8.78	
225	13500	7714	9.23	

1220					
MECHANICAL & ELECTRONIC: 200 GPM					
GPM GPH BPD ΔP PSI					
17040	9737	7.92			
17280	9874	8.32			
17520	10011	8.74			
17760	10149	9.19			
18000	10286	9.67			
	GPH 17040 17280 17520 17760	HANICAL & ELECTRONIC: 200 GPH BPD 17040 9737 17280 9874 17520 10011 17760 10149			

Only on low viscosity, lubricating liquids (diesel, kerosene, etc.) subject to usual limits on total Delta P.

TS Meter Spec Chart - Liters

Delta P on 1cPn Viscosity

ı	T\$10				
FLOW IN %	MECHANICAL & ELECTRONIC: 150 LPM				
OF NOM	M³/H	LPM	kPa	ΔP PSI	
2	0.2	3	1.9	0.02	
4	0.4	6	2.0	0.02	
6	0.5	9	2.1	0.02	
8	0.7	12	2.2	0.02	
10	0.9	15	2.4	0.02	
12	1.1	18	2.7	0.03	
14	1.3	21	3.0	0.03	
16	1.5	24	3.4	0.03	
18	1.6	27	3.7	0.04	
20	1.8	30	4.0	0.04	
22	2.0	33	4.4	0.04	
24	2.2	36	4.8	0.05	
26	2.4	39	5.3	0.05	
28	2.5	42	5.8	0.06	
30	2.7	45	6.3	0.06	
32	2.9	48	6.8	0.07	
34	3.1	51	7.3	0.07	
36	3.3	55	7.8	0.08	
38	3.5	58	8.4	0.08	
40	3.6	61	9.0	0.09	
42	3.8	64	9.5	0.10	
44	4.0	67	10.1	0.10	
46	4.2	70	10.6	0.11	
48	4.4	73	11.1	0.11	
50	4.5	76	11.6	0.12	
52	4.7	79	12.2	0.12	
54	4.9	82	12.8	0.13	
56	5.1	85	13.4	0.13	
58	5.3	88	14.0	0.14	
60	5.5	91	14.5	0.15	
62	5.6	94	15.1	0.15	
64	5.8	97	15.7	0.16	
66	6.0	100	16.4	0.16	
68	6.2	103	17.0	0.17	
70	6.4	106	17.6	0.18	

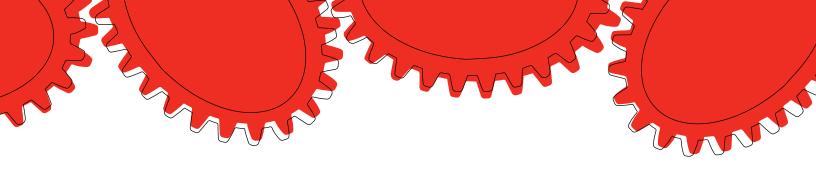
MEG		CETDONIC, 220	IDM	
MECHANICAL & ELECTRONIC: 230 LPM				
M³/H	LPM	kPa	ΔP PSI	
0.3	5	1.0	0.01	
0.5	9	1.0	0.01	
0.8	14	1.1	0.01	
1.1	18	1.1	0.01	
1.4	23	1.3	0.01	
1.6	27	1.4	0.01	
1.9	32	1.6	0.02	
2.2	36	1.8	0.02	
2.5	41	1.9	0.02	
2.7	45	2.1	0.02	
3.0	50	2.3	0.02	
3.3	55	2.6	0.03	
3.5	59	2.9	0.03	
3.8	64	3.1	0.03	
4.1	68	3.4	0.03	
4.4	73	3.7	0.04	
4.6	77	4.0	0.04	
4.9	82	4.3	0.04	
5.2	86	4.6	0.05	
5.5	91	4.9	0.05	
5.7	95	5.3	0.05	
6.0	100	5.6	0.06	
6.3	104	5.9	0.06	
6.5	109	6.2	0.06	
6.8	114	6.6	0.07	
7.1	118	6.9	0.07	
7.4	123	7.3	0.07	
7.6	127	7.6	0.08	
7.9	132	8.0	0.08	
8.2	136	8.3	0.08	
8.5	141	8.7	0.09	
8.7	145	9.1	0.09	
9.0	150	9.5	0.10	
9.3	154	9.9	0.10	
9.5	159	10.3	0.10	

MECHANICAL & ELECTRONIC: 570 LPM			
M³/H	LPM	kPa	ΔP PSI
0.7	11	1.0	0.01
1.4	23	1.1	0.01
2.0	34	1.1	0.01
2.7	45	1.2	0.01
3.4	57	1.3	0.01
4.1	68	1.5	0.02
4.8	79	1.7	0.02
5.5	91	1.9	0.02
6.1	102	2.1	0.02
6.8	114	2.3	0.02
7.5	125	2.6	0.03
8.2	136	2.8	0.03
8.9	148	3.2	0.03
9.5	159	3.5	0.03
10.2	170	3.8	0.04
10.9	182	4.1	0.04
11.6	193	4.5	0.04
12.3	204	4.9	0.05
13.0	216	5.3	0.05
13.6	227	5.7	0.06
14.3	238	6.1	0.06
15.0	250	6.5	0.06
15.7	261	6.8	0.07
16.4	273	7.2	0.07
17.0	284	7.6	0.08
17.7	295	8.1	0.08
18.4	307	8.6	0.09
19.1	318	9.0	0.09
19.8	329	9.5	0.09
20.5	341	9.9	0.10
21.1	352	10.4	0.10
21.8	363	10.9	0.11
22.5	375	11.5	0.11
23.2	386	12.0	0.12
23.9	397	12.5	0.13

\neg	T\$30						
	MECHANICAL & ELECTRONIC: 760 LPM						
	M³/H	LPM	kPa	ΔP PSI			
	0.9	15	1.0	0.01			
	1.8	30	1.1	0.01			
	2.7	45	1.2	0.01			
	3.6	61	1.2	0.01			
	4.5	76	1.4	0.01			
	5.5	91	1.6	0.02			
	6.4	106	1.8	0.02			
	7.3	121	2.0	0.02			
	8.2	136	2.2	0.02			
	9.1	151	2.4	0.02			
	10.0	167	2.7	0.03			
	10.9	182	3.0	0.03			
	11.8	197	3.3	0.03			
	12.7	212	3.7	0.04			
	13.6	227	4.0	0.04			
	14.5	242	4.3	0.04			
	15.5	257	4.7	0.05			
	16.4	273	5.1	0.05			
	17.3	288	5.5	0.06			
	18.2	303	5.9	0.06			
	19.1	318	6.3	0.06			
	20.0	333	6.8	0.07			
	20.9	348	7.2	0.07			
	21.8	363	7.6	0.08			
	22.7	379	8.0	0.08			
	23.6	394	8.5	0.08			
	24.5	409	9.0	0.09			
	25.5	424	9.4	0.09			
	26.4	439	9.9	0.10			
	27.3	454	10.4	0.10			
	28.2	469	10.9	0.11			
	29.1	485	11.4	0.11			
	30.0	500	12.0	0.12			
	30.9	515	12.5	0.13			
	31.8	530	13.1	0.13			

- TS30 -

- TS20 -

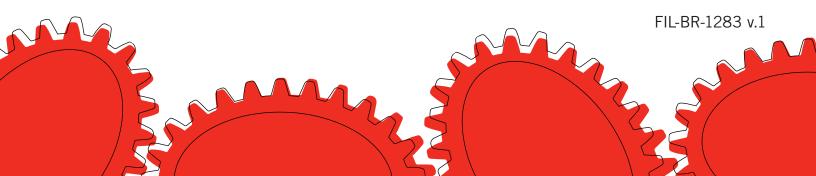

MECHANICAL & ELECTRONIC: 570 LPM MECHANICAL & ELECTRONIC: 150 LPM MECHANICAL & ELECTRONIC: 230 LPM MECHANICAL & ELECTRONIC: 760 LPM FLOW IN % OF NOM LPM kPa LPM kPa LPM M³/H GPH kPa ΔP PSI M³/H ΔP PSI M³/H ΔP PSI M³/H kPa ΔP PSI 72 6.5 109 18.2 0.18 9.8 164 10.7 0.11 24.5 409 13.0 0.13 32.7 545 13.7 0.14 74 420 6.7 112 18.8 0.19 10.1 168 11.1 0.11 25.2 13.6 0.14 33.6 560 14.2 0.14 432 575 76 6.9 115 19.4 0.19 10.4 173 11.4 0.11 25.9 14.1 0.14 34.5 14.8 0.15 78 7.1 118 20.0 0.20 10.6 177 11.9 0.12 26.6 443 146 0.15 35.5 591 15.3 0.15 70 7.3 121 10.9 454 15.9 20.5 0.21 182 12.2 0.12 27.3 15.1 0.15 36.4 606 0.16 82 7.5 124 21.2 0.21 11.2 186 12.7 0.13 28.0 466 15.7 0.16 37.3 621 16.5 0.16 84 7.6 127 21.8 0.22 11.5 191 13.1 0.13 28.6 477 16.3 0.16 38.2 636 17.1 0.17 488 86 7.8 130 22.5 0.23 117 195 13.6 0 14 29.3 17.0 0.17 39 1 651 17.8 0.18 88 8.0 133 23.3 0.23 12.0 200 14.0 0.14 30.0 500 17.6 0.18 40.0 666 18.5 0.18 90 8.2 136 24.0 0.24 12.3 204 14.5 0.15 30.7 511 18.3 0.18 40.9 681 19.2 0.19 522 19.9 92 8.4 139 24.7 0.25 12.5 209 15.0 0.15 31.4 19.0 0.19 41.8 697 0.20 94 8.5 142 25.5 0.26 12.8 213 15.6 0.16 32.0 534 19.8 0.20 42.7 712 20.7 0.21 96 8.7 145 26.3 0.26 13.1 218 16.0 0.16 32.7 545 20.5 0.20 43.6 727 21.4 0.21 148 742 22.3 98 8.9 27.1 0.27 13.4 223 16.6 0.17 33.4 556 21.3 44.5 0.22 0.21 100 9.1 151 27.9 0.28 13.6 227 17.1 0.17 34.1 568 22.1 0.22 45.5 757 23.1 0.23 102 0.18 0.23 0.24 104 0.24 0.25 -0.18 -0.25 0.26 106 0.19 36.8 25.4 26.6 108 0.20 0.25 0.27 110 0.20 0.26 0.28 112 0.21 0.27 0.29 114 0.22 0.28 0.30 116 0.23 0.30 0.31 118 0.24 0.31 0.32 120 0.32 0.33 0.25 122 0.26 0.33 0.35 124 -0.27 0.35 0.36 126 0.28 0.36 0.38 128 0.38 0.40 0.29 130 -0.31 0.40 0.41 132 0.33 0.41 0.43 134 0.34 0.43 0.45 136 0.45 0.47 0.36 138 0.50 0.47 140 0.39 0.50 0.52 142 0.41 0.52 0.55 144 0.43 0.55 0.57 146 0.58 0.60 0.45 148 -0.46 0.61 0.63 150 0.48 0.67

- TS15 -

- TS10-

Only on low viscosity, lubricating liquids (diesel, kerosene, etc.) subject to usual limits on total Delta P. Only on liquids with some viscosity (diesel fuel and higher).

35)


Fill-Rite Company

8825 Aviation Drive Fort Wayne, IN 46809 USA

> **T** 1 (800) 720-5192 1 (800) 747-7525 **F** 1 (800) 866-4681

fillrite.com | sotera.com | gormanrupp.com

